L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.309 + 0.951i)3-s + (0.309 − 0.951i)4-s + (−0.809 − 0.587i)6-s + (−0.618 + 1.90i)7-s + (0.309 + 0.951i)8-s + (−0.809 + 0.587i)9-s + 12-s + (−3.23 + 2.35i)13-s + (−0.618 − 1.90i)14-s + (−0.809 − 0.587i)16-s + (−4.85 − 3.52i)17-s + (0.309 − 0.951i)18-s + (1.23 + 3.80i)19-s − 1.99·21-s + ⋯ |
L(s) = 1 | + (−0.572 + 0.415i)2-s + (0.178 + 0.549i)3-s + (0.154 − 0.475i)4-s + (−0.330 − 0.239i)6-s + (−0.233 + 0.718i)7-s + (0.109 + 0.336i)8-s + (−0.269 + 0.195i)9-s + 0.288·12-s + (−0.897 + 0.652i)13-s + (−0.165 − 0.508i)14-s + (−0.202 − 0.146i)16-s + (−1.17 − 0.855i)17-s + (0.0728 − 0.224i)18-s + (0.283 + 0.872i)19-s − 0.436·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 + 0.0439i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 726 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 + 0.0439i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0128101 - 0.582565i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0128101 - 0.582565i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 - 0.587i)T \) |
| 3 | \( 1 + (-0.309 - 0.951i)T \) |
| 11 | \( 1 \) |
good | 5 | \( 1 + (1.54 + 4.75i)T^{2} \) |
| 7 | \( 1 + (0.618 - 1.90i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (3.23 - 2.35i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (4.85 + 3.52i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.23 - 3.80i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 6T + 23T^{2} \) |
| 29 | \( 1 + (1.85 - 5.70i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (6.47 - 4.70i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (3.09 - 9.51i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (1.85 + 5.70i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 8T + 43T^{2} \) |
| 47 | \( 1 + (1.85 + 5.70i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-6.47 - 4.70i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 4T + 67T^{2} \) |
| 71 | \( 1 + (4.85 + 3.52i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (0.618 - 1.90i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (-11.3 + 8.22i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (9.70 + 7.05i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 + 6T + 89T^{2} \) |
| 97 | \( 1 + (11.3 - 8.22i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57347338365070995873381443982, −9.827836849985562648945901238843, −8.983561814152215743179794239011, −8.617845403582890961467342480827, −7.28320944378426879574718139409, −6.65226074912859162210110155307, −5.39173554339057068073666778484, −4.71732005178290493052521099288, −3.21980002763904614402549606387, −2.01052737024116505605946071245,
0.33386215009781834284822684933, 1.91104322336076092734540904244, 3.06290926273119812227518036092, 4.20351875588394661414874084658, 5.52224149450260121535508708399, 6.86243724025094964732781095325, 7.33062285557731584257442610565, 8.249675599553724048766006978473, 9.209873033304049062755549922637, 9.852424450978567265140550589560