Properties

Label 2-723-1.1-c3-0-11
Degree $2$
Conductor $723$
Sign $1$
Analytic cond. $42.6583$
Root an. cond. $6.53133$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.61·2-s − 3·3-s + 13.2·4-s + 17.5·5-s + 13.8·6-s − 13.8·7-s − 24.4·8-s + 9·9-s − 80.7·10-s − 71.1·11-s − 39.8·12-s − 33.5·13-s + 63.7·14-s − 52.5·15-s + 6.28·16-s − 109.·17-s − 41.5·18-s + 59.1·19-s + 232.·20-s + 41.4·21-s + 328.·22-s − 6.21·23-s + 73.2·24-s + 181.·25-s + 154.·26-s − 27·27-s − 183.·28-s + ⋯
L(s)  = 1  − 1.63·2-s − 0.577·3-s + 1.66·4-s + 1.56·5-s + 0.941·6-s − 0.746·7-s − 1.07·8-s + 0.333·9-s − 2.55·10-s − 1.95·11-s − 0.959·12-s − 0.716·13-s + 1.21·14-s − 0.904·15-s + 0.0982·16-s − 1.55·17-s − 0.543·18-s + 0.713·19-s + 2.60·20-s + 0.430·21-s + 3.18·22-s − 0.0563·23-s + 0.622·24-s + 1.45·25-s + 1.16·26-s − 0.192·27-s − 1.23·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 723 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 723 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(723\)    =    \(3 \cdot 241\)
Sign: $1$
Analytic conductor: \(42.6583\)
Root analytic conductor: \(6.53133\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 723,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.4631991564\)
\(L(\frac12)\) \(\approx\) \(0.4631991564\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
241 \( 1 + 241T \)
good2 \( 1 + 4.61T + 8T^{2} \)
5 \( 1 - 17.5T + 125T^{2} \)
7 \( 1 + 13.8T + 343T^{2} \)
11 \( 1 + 71.1T + 1.33e3T^{2} \)
13 \( 1 + 33.5T + 2.19e3T^{2} \)
17 \( 1 + 109.T + 4.91e3T^{2} \)
19 \( 1 - 59.1T + 6.85e3T^{2} \)
23 \( 1 + 6.21T + 1.21e4T^{2} \)
29 \( 1 - 160.T + 2.43e4T^{2} \)
31 \( 1 + 308.T + 2.97e4T^{2} \)
37 \( 1 - 251.T + 5.06e4T^{2} \)
41 \( 1 + 218.T + 6.89e4T^{2} \)
43 \( 1 + 244.T + 7.95e4T^{2} \)
47 \( 1 - 639.T + 1.03e5T^{2} \)
53 \( 1 - 394.T + 1.48e5T^{2} \)
59 \( 1 + 257.T + 2.05e5T^{2} \)
61 \( 1 - 381.T + 2.26e5T^{2} \)
67 \( 1 + 488.T + 3.00e5T^{2} \)
71 \( 1 - 703.T + 3.57e5T^{2} \)
73 \( 1 - 1.15e3T + 3.89e5T^{2} \)
79 \( 1 + 707.T + 4.93e5T^{2} \)
83 \( 1 - 289.T + 5.71e5T^{2} \)
89 \( 1 - 83.6T + 7.04e5T^{2} \)
97 \( 1 + 260.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.894515458463997327206303498580, −9.438841444921433077647417078273, −8.512601874463823288855527754938, −7.39357122375460143085620854817, −6.71625400145452838138324066607, −5.76539202136043756500640040648, −4.93962504185411979441918313999, −2.66076528332065240248743349525, −2.02464864048902934185389153215, −0.48362995601796702947720478371, 0.48362995601796702947720478371, 2.02464864048902934185389153215, 2.66076528332065240248743349525, 4.93962504185411979441918313999, 5.76539202136043756500640040648, 6.71625400145452838138324066607, 7.39357122375460143085620854817, 8.512601874463823288855527754938, 9.438841444921433077647417078273, 9.894515458463997327206303498580

Graph of the $Z$-function along the critical line