Properties

Label 2-722-1.1-c5-0-119
Degree $2$
Conductor $722$
Sign $-1$
Analytic cond. $115.797$
Root an. cond. $10.7609$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 25.4·3-s + 16·4-s + 17.9·5-s − 101.·6-s − 245.·7-s − 64·8-s + 403.·9-s − 71.7·10-s + 534.·11-s + 406.·12-s − 550.·13-s + 980.·14-s + 455.·15-s + 256·16-s + 611.·17-s − 1.61e3·18-s + 286.·20-s − 6.23e3·21-s − 2.13e3·22-s − 3.79e3·23-s − 1.62e3·24-s − 2.80e3·25-s + 2.20e3·26-s + 4.06e3·27-s − 3.92e3·28-s + 4.66e3·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.63·3-s + 0.5·4-s + 0.320·5-s − 1.15·6-s − 1.89·7-s − 0.353·8-s + 1.65·9-s − 0.226·10-s + 1.33·11-s + 0.815·12-s − 0.902·13-s + 1.33·14-s + 0.522·15-s + 0.250·16-s + 0.513·17-s − 1.17·18-s + 0.160·20-s − 3.08·21-s − 0.941·22-s − 1.49·23-s − 0.576·24-s − 0.897·25-s + 0.638·26-s + 1.07·27-s − 0.945·28-s + 1.02·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(115.797\)
Root analytic conductor: \(10.7609\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 722,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4T \)
19 \( 1 \)
good3 \( 1 - 25.4T + 243T^{2} \)
5 \( 1 - 17.9T + 3.12e3T^{2} \)
7 \( 1 + 245.T + 1.68e4T^{2} \)
11 \( 1 - 534.T + 1.61e5T^{2} \)
13 \( 1 + 550.T + 3.71e5T^{2} \)
17 \( 1 - 611.T + 1.41e6T^{2} \)
23 \( 1 + 3.79e3T + 6.43e6T^{2} \)
29 \( 1 - 4.66e3T + 2.05e7T^{2} \)
31 \( 1 - 8.54e3T + 2.86e7T^{2} \)
37 \( 1 + 2.21e3T + 6.93e7T^{2} \)
41 \( 1 + 2.94e3T + 1.15e8T^{2} \)
43 \( 1 + 5.23e3T + 1.47e8T^{2} \)
47 \( 1 + 3.71e3T + 2.29e8T^{2} \)
53 \( 1 + 3.86e4T + 4.18e8T^{2} \)
59 \( 1 - 1.84e4T + 7.14e8T^{2} \)
61 \( 1 + 4.29e4T + 8.44e8T^{2} \)
67 \( 1 + 2.44e4T + 1.35e9T^{2} \)
71 \( 1 + 4.89e4T + 1.80e9T^{2} \)
73 \( 1 + 417.T + 2.07e9T^{2} \)
79 \( 1 - 4.56e4T + 3.07e9T^{2} \)
83 \( 1 - 8.55e3T + 3.93e9T^{2} \)
89 \( 1 + 6.95e4T + 5.58e9T^{2} \)
97 \( 1 + 1.09e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.407431965807927658132631669805, −8.505186222850154910307516841719, −7.68681068496864942053509389464, −6.70443861407326319941193989077, −6.14019422674942946395292166681, −4.17632517351290372194950128954, −3.27060569420058296167394268202, −2.59691006788503393052759911668, −1.48348071457409279363310176670, 0, 1.48348071457409279363310176670, 2.59691006788503393052759911668, 3.27060569420058296167394268202, 4.17632517351290372194950128954, 6.14019422674942946395292166681, 6.70443861407326319941193989077, 7.68681068496864942053509389464, 8.505186222850154910307516841719, 9.407431965807927658132631669805

Graph of the $Z$-function along the critical line