Properties

Label 2-722-19.6-c1-0-26
Degree $2$
Conductor $722$
Sign $-0.713 + 0.700i$
Analytic cond. $5.76519$
Root an. cond. $2.40108$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.766 − 0.642i)2-s + (0.939 + 0.342i)3-s + (0.173 − 0.984i)4-s + (−0.694 − 3.93i)5-s + (0.939 − 0.342i)6-s + (−1.5 + 2.59i)7-s + (−0.500 − 0.866i)8-s + (−1.53 − 1.28i)9-s + (−3.06 − 2.57i)10-s + (−1 − 1.73i)11-s + (0.499 − 0.866i)12-s + (0.939 − 0.342i)13-s + (0.520 + 2.95i)14-s + (0.694 − 3.93i)15-s + (−0.939 − 0.342i)16-s + (2.29 − 1.92i)17-s + ⋯
L(s)  = 1  + (0.541 − 0.454i)2-s + (0.542 + 0.197i)3-s + (0.0868 − 0.492i)4-s + (−0.310 − 1.76i)5-s + (0.383 − 0.139i)6-s + (−0.566 + 0.981i)7-s + (−0.176 − 0.306i)8-s + (−0.510 − 0.428i)9-s + (−0.968 − 0.813i)10-s + (−0.301 − 0.522i)11-s + (0.144 − 0.250i)12-s + (0.260 − 0.0948i)13-s + (0.139 + 0.789i)14-s + (0.179 − 1.01i)15-s + (−0.234 − 0.0855i)16-s + (0.557 − 0.467i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.713 + 0.700i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 722 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.713 + 0.700i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(722\)    =    \(2 \cdot 19^{2}\)
Sign: $-0.713 + 0.700i$
Analytic conductor: \(5.76519\)
Root analytic conductor: \(2.40108\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{722} (595, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 722,\ (\ :1/2),\ -0.713 + 0.700i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.668258 - 1.63482i\)
\(L(\frac12)\) \(\approx\) \(0.668258 - 1.63482i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.766 + 0.642i)T \)
19 \( 1 \)
good3 \( 1 + (-0.939 - 0.342i)T + (2.29 + 1.92i)T^{2} \)
5 \( 1 + (0.694 + 3.93i)T + (-4.69 + 1.71i)T^{2} \)
7 \( 1 + (1.5 - 2.59i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (1 + 1.73i)T + (-5.5 + 9.52i)T^{2} \)
13 \( 1 + (-0.939 + 0.342i)T + (9.95 - 8.35i)T^{2} \)
17 \( 1 + (-2.29 + 1.92i)T + (2.95 - 16.7i)T^{2} \)
23 \( 1 + (0.173 - 0.984i)T + (-21.6 - 7.86i)T^{2} \)
29 \( 1 + (3.83 + 3.21i)T + (5.03 + 28.5i)T^{2} \)
31 \( 1 + (-4 + 6.92i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + (-7.51 - 2.73i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (-0.694 - 3.93i)T + (-40.4 + 14.7i)T^{2} \)
47 \( 1 + (-6.12 - 5.14i)T + (8.16 + 46.2i)T^{2} \)
53 \( 1 + (0.173 - 0.984i)T + (-49.8 - 18.1i)T^{2} \)
59 \( 1 + (-11.4 + 9.64i)T + (10.2 - 58.1i)T^{2} \)
61 \( 1 + (-0.347 + 1.96i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (-2.29 - 1.92i)T + (11.6 + 65.9i)T^{2} \)
71 \( 1 + (-0.347 - 1.96i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (8.45 + 3.07i)T + (55.9 + 46.9i)T^{2} \)
79 \( 1 + (-9.39 - 3.42i)T + (60.5 + 50.7i)T^{2} \)
83 \( 1 + (-3 + 5.19i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 + (68.1 - 57.2i)T^{2} \)
97 \( 1 + (1.53 - 1.28i)T + (16.8 - 95.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.674404510318233069820676051713, −9.343398917884293226738179506364, −8.537268569271844048811657920178, −7.84580885527893242171555643276, −5.98673998840125542507550149284, −5.58805224378258564511893935610, −4.46093337790663584358666792915, −3.49298788144690490746115928958, −2.42855879150439763908586196773, −0.70305837674325201585939812283, 2.37531334459146690581550722978, 3.30990014845757975455377241577, 3.96658836716027935821134805837, 5.50758334305204991516361997592, 6.58295368802421572583584146115, 7.22988652874108129194175611748, 7.71472511650960678108561021459, 8.803858251130659719446568091212, 10.24474442807204545453415454734, 10.55757419238276451117637426550

Graph of the $Z$-function along the critical line