Properties

Label 2-7203-1.1-c1-0-333
Degree $2$
Conductor $7203$
Sign $-1$
Analytic cond. $57.5162$
Root an. cond. $7.58394$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.35·2-s + 3-s + 3.54·4-s − 0.993·5-s + 2.35·6-s + 3.62·8-s + 9-s − 2.33·10-s − 4.38·11-s + 3.54·12-s − 0.0172·13-s − 0.993·15-s + 1.45·16-s − 2.00·17-s + 2.35·18-s − 0.356·19-s − 3.51·20-s − 10.3·22-s − 6.85·23-s + 3.62·24-s − 4.01·25-s − 0.0405·26-s + 27-s − 3.21·29-s − 2.33·30-s − 5.04·31-s − 3.83·32-s + ⋯
L(s)  = 1  + 1.66·2-s + 0.577·3-s + 1.77·4-s − 0.444·5-s + 0.960·6-s + 1.28·8-s + 0.333·9-s − 0.739·10-s − 1.32·11-s + 1.02·12-s − 0.00478·13-s − 0.256·15-s + 0.362·16-s − 0.486·17-s + 0.554·18-s − 0.0816·19-s − 0.786·20-s − 2.20·22-s − 1.42·23-s + 0.739·24-s − 0.802·25-s − 0.00796·26-s + 0.192·27-s − 0.596·29-s − 0.427·30-s − 0.906·31-s − 0.677·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7203 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7203 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7203\)    =    \(3 \cdot 7^{4}\)
Sign: $-1$
Analytic conductor: \(57.5162\)
Root analytic conductor: \(7.58394\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7203,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 \)
good2 \( 1 - 2.35T + 2T^{2} \)
5 \( 1 + 0.993T + 5T^{2} \)
11 \( 1 + 4.38T + 11T^{2} \)
13 \( 1 + 0.0172T + 13T^{2} \)
17 \( 1 + 2.00T + 17T^{2} \)
19 \( 1 + 0.356T + 19T^{2} \)
23 \( 1 + 6.85T + 23T^{2} \)
29 \( 1 + 3.21T + 29T^{2} \)
31 \( 1 + 5.04T + 31T^{2} \)
37 \( 1 + 11.7T + 37T^{2} \)
41 \( 1 - 10.2T + 41T^{2} \)
43 \( 1 - 4.14T + 43T^{2} \)
47 \( 1 + 9.97T + 47T^{2} \)
53 \( 1 - 5.53T + 53T^{2} \)
59 \( 1 - 11.0T + 59T^{2} \)
61 \( 1 - 13.6T + 61T^{2} \)
67 \( 1 - 6.96T + 67T^{2} \)
71 \( 1 + 4.24T + 71T^{2} \)
73 \( 1 + 11.8T + 73T^{2} \)
79 \( 1 + 0.480T + 79T^{2} \)
83 \( 1 + 1.93T + 83T^{2} \)
89 \( 1 - 8.58T + 89T^{2} \)
97 \( 1 + 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.39087580935385689932310679232, −6.87151892447360952922202249333, −5.82068504308728520041384806462, −5.46156590301709871199324281701, −4.58964804107975787127088220102, −3.90301296975820463584064242653, −3.44267373996631731764332926496, −2.42578995501875840965903446102, −1.99320806577674556681471618244, 0, 1.99320806577674556681471618244, 2.42578995501875840965903446102, 3.44267373996631731764332926496, 3.90301296975820463584064242653, 4.58964804107975787127088220102, 5.46156590301709871199324281701, 5.82068504308728520041384806462, 6.87151892447360952922202249333, 7.39087580935385689932310679232

Graph of the $Z$-function along the critical line