Properties

Label 2-7203-1.1-c1-0-334
Degree $2$
Conductor $7203$
Sign $-1$
Analytic cond. $57.5162$
Root an. cond. $7.58394$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.16·2-s + 3-s + 2.70·4-s + 1.45·5-s + 2.16·6-s + 1.53·8-s + 9-s + 3.15·10-s − 5.83·11-s + 2.70·12-s − 6.73·13-s + 1.45·15-s − 2.08·16-s + 0.451·17-s + 2.16·18-s − 6.09·19-s + 3.93·20-s − 12.6·22-s + 1.51·23-s + 1.53·24-s − 2.89·25-s − 14.6·26-s + 27-s + 1.27·29-s + 3.15·30-s + 3.08·31-s − 7.59·32-s + ⋯
L(s)  = 1  + 1.53·2-s + 0.577·3-s + 1.35·4-s + 0.649·5-s + 0.885·6-s + 0.542·8-s + 0.333·9-s + 0.996·10-s − 1.75·11-s + 0.781·12-s − 1.86·13-s + 0.375·15-s − 0.521·16-s + 0.109·17-s + 0.511·18-s − 1.39·19-s + 0.879·20-s − 2.69·22-s + 0.316·23-s + 0.312·24-s − 0.578·25-s − 2.86·26-s + 0.192·27-s + 0.237·29-s + 0.575·30-s + 0.554·31-s − 1.34·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7203 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7203 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7203\)    =    \(3 \cdot 7^{4}\)
Sign: $-1$
Analytic conductor: \(57.5162\)
Root analytic conductor: \(7.58394\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7203,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 \)
good2 \( 1 - 2.16T + 2T^{2} \)
5 \( 1 - 1.45T + 5T^{2} \)
11 \( 1 + 5.83T + 11T^{2} \)
13 \( 1 + 6.73T + 13T^{2} \)
17 \( 1 - 0.451T + 17T^{2} \)
19 \( 1 + 6.09T + 19T^{2} \)
23 \( 1 - 1.51T + 23T^{2} \)
29 \( 1 - 1.27T + 29T^{2} \)
31 \( 1 - 3.08T + 31T^{2} \)
37 \( 1 + 1.79T + 37T^{2} \)
41 \( 1 - 5.28T + 41T^{2} \)
43 \( 1 - 7.41T + 43T^{2} \)
47 \( 1 - 3.98T + 47T^{2} \)
53 \( 1 + 8.05T + 53T^{2} \)
59 \( 1 + 7.10T + 59T^{2} \)
61 \( 1 + 0.0382T + 61T^{2} \)
67 \( 1 + 0.886T + 67T^{2} \)
71 \( 1 + 2.61T + 71T^{2} \)
73 \( 1 - 5.91T + 73T^{2} \)
79 \( 1 + 16.7T + 79T^{2} \)
83 \( 1 - 2.36T + 83T^{2} \)
89 \( 1 - 2.01T + 89T^{2} \)
97 \( 1 - 5.13T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.51620255373048542700890698778, −6.71516574186619173686077617965, −5.93208066828803723693581733789, −5.31977313777083821016571258740, −4.70221157011552292662217114223, −4.17926438934885466109141507979, −2.95850837080727030550589511078, −2.55944130538555225900635215639, −2.02368775868718601775069331508, 0, 2.02368775868718601775069331508, 2.55944130538555225900635215639, 2.95850837080727030550589511078, 4.17926438934885466109141507979, 4.70221157011552292662217114223, 5.31977313777083821016571258740, 5.93208066828803723693581733789, 6.71516574186619173686077617965, 7.51620255373048542700890698778

Graph of the $Z$-function along the critical line