Properties

Label 2-7203-1.1-c1-0-280
Degree $2$
Conductor $7203$
Sign $-1$
Analytic cond. $57.5162$
Root an. cond. $7.58394$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.76·2-s + 3-s + 1.10·4-s − 3.70·5-s + 1.76·6-s − 1.57·8-s + 9-s − 6.53·10-s − 1.53·11-s + 1.10·12-s + 2.45·13-s − 3.70·15-s − 4.98·16-s + 4.82·17-s + 1.76·18-s + 3.81·19-s − 4.11·20-s − 2.70·22-s + 4.81·23-s − 1.57·24-s + 8.75·25-s + 4.32·26-s + 27-s − 0.324·29-s − 6.53·30-s − 6.64·31-s − 5.65·32-s + ⋯
L(s)  = 1  + 1.24·2-s + 0.577·3-s + 0.554·4-s − 1.65·5-s + 0.719·6-s − 0.555·8-s + 0.333·9-s − 2.06·10-s − 0.462·11-s + 0.320·12-s + 0.680·13-s − 0.957·15-s − 1.24·16-s + 1.17·17-s + 0.415·18-s + 0.874·19-s − 0.919·20-s − 0.576·22-s + 1.00·23-s − 0.320·24-s + 1.75·25-s + 0.847·26-s + 0.192·27-s − 0.0602·29-s − 1.19·30-s − 1.19·31-s − 0.999·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7203 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7203 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7203\)    =    \(3 \cdot 7^{4}\)
Sign: $-1$
Analytic conductor: \(57.5162\)
Root analytic conductor: \(7.58394\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7203,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
7 \( 1 \)
good2 \( 1 - 1.76T + 2T^{2} \)
5 \( 1 + 3.70T + 5T^{2} \)
11 \( 1 + 1.53T + 11T^{2} \)
13 \( 1 - 2.45T + 13T^{2} \)
17 \( 1 - 4.82T + 17T^{2} \)
19 \( 1 - 3.81T + 19T^{2} \)
23 \( 1 - 4.81T + 23T^{2} \)
29 \( 1 + 0.324T + 29T^{2} \)
31 \( 1 + 6.64T + 31T^{2} \)
37 \( 1 + 8.95T + 37T^{2} \)
41 \( 1 + 2.43T + 41T^{2} \)
43 \( 1 + 5.44T + 43T^{2} \)
47 \( 1 - 8.79T + 47T^{2} \)
53 \( 1 + 10.0T + 53T^{2} \)
59 \( 1 + 13.6T + 59T^{2} \)
61 \( 1 + 0.829T + 61T^{2} \)
67 \( 1 + 12.8T + 67T^{2} \)
71 \( 1 + 1.10T + 71T^{2} \)
73 \( 1 + 5.65T + 73T^{2} \)
79 \( 1 + 11.7T + 79T^{2} \)
83 \( 1 - 7.33T + 83T^{2} \)
89 \( 1 - 16.4T + 89T^{2} \)
97 \( 1 - 10.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.48091856212963561264887505659, −7.03221580574228165105442764856, −5.99045851092036808714532378090, −5.18968972953981197071122735672, −4.66873525388741942138675598326, −3.77027653913391913921821154420, −3.36060113551920986628724795001, −2.93257298089630375188565483995, −1.39751994061843374540059342014, 0, 1.39751994061843374540059342014, 2.93257298089630375188565483995, 3.36060113551920986628724795001, 3.77027653913391913921821154420, 4.66873525388741942138675598326, 5.18968972953981197071122735672, 5.99045851092036808714532378090, 7.03221580574228165105442764856, 7.48091856212963561264887505659

Graph of the $Z$-function along the critical line