L(s) = 1 | + 4i·7-s + 5.65·11-s − 4·13-s − 4.24i·17-s + 5.65·23-s − 1.41i·29-s − 4i·31-s + 6·37-s − 9.89i·41-s − 8i·43-s + 5.65·47-s − 9·49-s − 4.24i·53-s − 11.3·59-s − 2·61-s + ⋯ |
L(s) = 1 | + 1.51i·7-s + 1.70·11-s − 1.10·13-s − 1.02i·17-s + 1.17·23-s − 0.262i·29-s − 0.718i·31-s + 0.986·37-s − 1.54i·41-s − 1.21i·43-s + 0.825·47-s − 1.28·49-s − 0.582i·53-s − 1.47·59-s − 0.256·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.985 + 0.169i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.985 + 0.169i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.134829727\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.134829727\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 4iT - 7T^{2} \) |
| 11 | \( 1 - 5.65T + 11T^{2} \) |
| 13 | \( 1 + 4T + 13T^{2} \) |
| 17 | \( 1 + 4.24iT - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 - 5.65T + 23T^{2} \) |
| 29 | \( 1 + 1.41iT - 29T^{2} \) |
| 31 | \( 1 + 4iT - 31T^{2} \) |
| 37 | \( 1 - 6T + 37T^{2} \) |
| 41 | \( 1 + 9.89iT - 41T^{2} \) |
| 43 | \( 1 + 8iT - 43T^{2} \) |
| 47 | \( 1 - 5.65T + 47T^{2} \) |
| 53 | \( 1 + 4.24iT - 53T^{2} \) |
| 59 | \( 1 + 11.3T + 59T^{2} \) |
| 61 | \( 1 + 2T + 61T^{2} \) |
| 67 | \( 1 + 8iT - 67T^{2} \) |
| 71 | \( 1 - 5.65T + 71T^{2} \) |
| 73 | \( 1 + 73T^{2} \) |
| 79 | \( 1 - 4iT - 79T^{2} \) |
| 83 | \( 1 - 5.65T + 83T^{2} \) |
| 89 | \( 1 + 4.24iT - 89T^{2} \) |
| 97 | \( 1 - 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.86451892107228650430172149398, −7.13892181054178486410959935838, −6.53690300391490128096231427208, −5.76503358037135691773311641731, −5.13706109999569795012872379302, −4.41993708966906554351307549509, −3.45888550948050011686097142701, −2.57720302042661161888157117833, −1.96332553051199315458998853228, −0.64080193492097473913536882666,
0.944864860667145704091545992116, 1.52376312349630613158836103125, 2.89005201282552288741082975291, 3.67643302055778714449512818796, 4.40149108470166146262312500398, 4.81520140010966512422824404706, 6.10271850288060723933067686280, 6.57972749124769553097936350347, 7.27383040058537241223590082964, 7.73326349156638845955956084043