Properties

Label 8-7200e4-1.1-c1e4-0-25
Degree $8$
Conductor $2.687\times 10^{15}$
Sign $1$
Analytic cond. $1.09254\times 10^{7}$
Root an. cond. $7.58236$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 16·11-s + 4·13-s + 16·23-s + 16·37-s − 24·47-s + 22·49-s − 8·59-s + 4·61-s + 24·71-s − 32·73-s − 24·83-s + 36·97-s + 24·107-s + 44·109-s + 120·121-s + 127-s + 131-s + 137-s + 139-s − 64·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + ⋯
L(s)  = 1  − 4.82·11-s + 1.10·13-s + 3.33·23-s + 2.63·37-s − 3.50·47-s + 22/7·49-s − 1.04·59-s + 0.512·61-s + 2.84·71-s − 3.74·73-s − 2.63·83-s + 3.65·97-s + 2.32·107-s + 4.21·109-s + 10.9·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5.35·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 3^{8} \cdot 5^{8}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 3^{8} \cdot 5^{8}\)
Sign: $1$
Analytic conductor: \(1.09254\times 10^{7}\)
Root analytic conductor: \(7.58236\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 3^{8} \cdot 5^{8} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.859125873\)
\(L(\frac12)\) \(\approx\) \(3.859125873\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$D_4\times C_2$ \( 1 - 22 T^{2} + 211 T^{4} - 22 p^{2} T^{6} + p^{4} T^{8} \)
11$D_{4}$ \( ( 1 + 8 T + 36 T^{2} + 8 p T^{3} + p^{2} T^{4} )^{2} \)
13$D_{4}$ \( ( 1 - 2 T - 5 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
17$D_4\times C_2$ \( 1 - 56 T^{2} + 1330 T^{4} - 56 p^{2} T^{6} + p^{4} T^{8} \)
19$D_4\times C_2$ \( 1 - 22 T^{2} + 195 T^{4} - 22 p^{2} T^{6} + p^{4} T^{8} \)
23$D_{4}$ \( ( 1 - 8 T + 60 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
29$D_4\times C_2$ \( 1 - 8 T^{2} - 894 T^{4} - 8 p^{2} T^{6} + p^{4} T^{8} \)
31$D_4\times C_2$ \( 1 - 86 T^{2} + 3699 T^{4} - 86 p^{2} T^{6} + p^{4} T^{8} \)
37$D_{4}$ \( ( 1 - 8 T + 82 T^{2} - 8 p T^{3} + p^{2} T^{4} )^{2} \)
41$D_4\times C_2$ \( 1 - 140 T^{2} + 8134 T^{4} - 140 p^{2} T^{6} + p^{4} T^{8} \)
43$D_4\times C_2$ \( 1 - 118 T^{2} + 6979 T^{4} - 118 p^{2} T^{6} + p^{4} T^{8} \)
47$D_{4}$ \( ( 1 + 12 T + 128 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
53$D_4\times C_2$ \( 1 - 188 T^{2} + 14326 T^{4} - 188 p^{2} T^{6} + p^{4} T^{8} \)
59$D_{4}$ \( ( 1 + 4 T + 72 T^{2} + 4 p T^{3} + p^{2} T^{4} )^{2} \)
61$D_{4}$ \( ( 1 - 2 T + 115 T^{2} - 2 p T^{3} + p^{2} T^{4} )^{2} \)
67$D_4\times C_2$ \( 1 - 230 T^{2} + 22131 T^{4} - 230 p^{2} T^{6} + p^{4} T^{8} \)
71$D_{4}$ \( ( 1 - 12 T + 146 T^{2} - 12 p T^{3} + p^{2} T^{4} )^{2} \)
73$D_{4}$ \( ( 1 + 16 T + 138 T^{2} + 16 p T^{3} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
83$D_{4}$ \( ( 1 + 12 T + 200 T^{2} + 12 p T^{3} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 34 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2$ \( ( 1 - 9 T + p T^{2} )^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.59913315336096070182540384029, −5.36198875534597758902456013450, −5.08409472427899078738274441792, −4.98349856849110734636748541898, −4.92504300056058751873831524075, −4.75951200118820887232474284413, −4.43226791724868203331082988113, −4.34488712561200073247184536593, −4.33059145868896031290073462302, −3.69103479242007134408347405702, −3.53887867411739176625892938354, −3.36792562242174965657467151721, −3.17198592569700266008301311653, −2.93660792828993910499531775638, −2.80100156972463058883701888261, −2.66538923387610898329670939853, −2.62387606325425864375779872549, −2.18739844854904054825629167632, −1.98450775448176746071945182712, −1.64492141058358606638989812973, −1.61379356915973691451341248411, −0.863846918171139973333220011533, −0.73391924644291854916889066924, −0.67920104162489992579883489351, −0.30017526792653881900534100731, 0.30017526792653881900534100731, 0.67920104162489992579883489351, 0.73391924644291854916889066924, 0.863846918171139973333220011533, 1.61379356915973691451341248411, 1.64492141058358606638989812973, 1.98450775448176746071945182712, 2.18739844854904054825629167632, 2.62387606325425864375779872549, 2.66538923387610898329670939853, 2.80100156972463058883701888261, 2.93660792828993910499531775638, 3.17198592569700266008301311653, 3.36792562242174965657467151721, 3.53887867411739176625892938354, 3.69103479242007134408347405702, 4.33059145868896031290073462302, 4.34488712561200073247184536593, 4.43226791724868203331082988113, 4.75951200118820887232474284413, 4.92504300056058751873831524075, 4.98349856849110734636748541898, 5.08409472427899078738274441792, 5.36198875534597758902456013450, 5.59913315336096070182540384029

Graph of the $Z$-function along the critical line