L(s) = 1 | + (0.897 + 1.09i)2-s + (−0.390 + 1.96i)4-s + (−0.140 − 2.23i)5-s + (−2.83 − 2.83i)7-s + (−2.49 + 1.33i)8-s + (2.31 − 2.15i)10-s + (−4.36 + 4.36i)11-s − 4.99i·13-s + (0.555 − 5.63i)14-s + (−3.69 − 1.53i)16-s + (−2.27 − 2.27i)17-s + (1.45 − 1.45i)19-s + (4.43 + 0.596i)20-s + (−8.67 − 0.856i)22-s + (−1.28 + 1.28i)23-s + ⋯ |
L(s) = 1 | + (0.634 + 0.773i)2-s + (−0.195 + 0.980i)4-s + (−0.0627 − 0.998i)5-s + (−1.07 − 1.07i)7-s + (−0.882 + 0.470i)8-s + (0.731 − 0.681i)10-s + (−1.31 + 1.31i)11-s − 1.38i·13-s + (0.148 − 1.50i)14-s + (−0.923 − 0.383i)16-s + (−0.551 − 0.551i)17-s + (0.334 − 0.334i)19-s + (0.991 + 0.133i)20-s + (−1.85 − 0.182i)22-s + (−0.268 + 0.268i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.168 + 0.985i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.168 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.426944 - 0.506264i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.426944 - 0.506264i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.897 - 1.09i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.140 + 2.23i)T \) |
good | 7 | \( 1 + (2.83 + 2.83i)T + 7iT^{2} \) |
| 11 | \( 1 + (4.36 - 4.36i)T - 11iT^{2} \) |
| 13 | \( 1 + 4.99iT - 13T^{2} \) |
| 17 | \( 1 + (2.27 + 2.27i)T + 17iT^{2} \) |
| 19 | \( 1 + (-1.45 + 1.45i)T - 19iT^{2} \) |
| 23 | \( 1 + (1.28 - 1.28i)T - 23iT^{2} \) |
| 29 | \( 1 + (-0.965 - 0.965i)T + 29iT^{2} \) |
| 31 | \( 1 + 0.703iT - 31T^{2} \) |
| 37 | \( 1 + 6.29iT - 37T^{2} \) |
| 41 | \( 1 - 0.772iT - 41T^{2} \) |
| 43 | \( 1 - 4.84iT - 43T^{2} \) |
| 47 | \( 1 + (-0.450 + 0.450i)T - 47iT^{2} \) |
| 53 | \( 1 + 4.17T + 53T^{2} \) |
| 59 | \( 1 + (-2.23 - 2.23i)T + 59iT^{2} \) |
| 61 | \( 1 + (-0.794 + 0.794i)T - 61iT^{2} \) |
| 67 | \( 1 + 13.2iT - 67T^{2} \) |
| 71 | \( 1 - 10.8T + 71T^{2} \) |
| 73 | \( 1 + (-10.3 - 10.3i)T + 73iT^{2} \) |
| 79 | \( 1 + 4.49T + 79T^{2} \) |
| 83 | \( 1 - 7.59T + 83T^{2} \) |
| 89 | \( 1 + 10.7T + 89T^{2} \) |
| 97 | \( 1 + (0.751 + 0.751i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.963471790532837449080548110373, −9.358353855963936370461675309897, −8.053359698099472328737340995542, −7.56064533816766975352353819147, −6.72052696365962051101176878535, −5.48701243275722868710901585654, −4.84402413254057702882768474404, −3.86829508637402562437163850747, −2.69696957040700046378839960711, −0.25546787701102881769671309922,
2.24544016272569021538691050718, 2.97414017853172460710960631636, 3.86216135568916364274329947298, 5.32219310119929293912469301966, 6.16526052731538738345551543923, 6.69016449247968823748826009093, 8.252853041652164388034025866106, 9.170430524068399736767029961240, 10.01187475810299220408247202656, 10.75126527194594579588979486534