L(s) = 1 | + (0.403 − 1.68i)3-s + (−0.5 + 0.866i)5-s + (−0.596 − 1.03i)7-s + (−2.67 − 1.35i)9-s + (−1.66 − 2.87i)11-s + (−0.853 + 1.47i)13-s + (1.25 + 1.19i)15-s − 6.34·17-s − 1.32·19-s + (−1.98 + 0.588i)21-s + (3.43 − 5.94i)23-s + (−0.499 − 0.866i)25-s + (−3.36 + 3.95i)27-s + (−1.01 − 1.75i)29-s + (−1.33 + 2.32i)31-s + ⋯ |
L(s) = 1 | + (0.232 − 0.972i)3-s + (−0.223 + 0.387i)5-s + (−0.225 − 0.390i)7-s + (−0.891 − 0.452i)9-s + (−0.500 − 0.867i)11-s + (−0.236 + 0.410i)13-s + (0.324 + 0.307i)15-s − 1.53·17-s − 0.303·19-s + (−0.432 + 0.128i)21-s + (0.715 − 1.23i)23-s + (−0.0999 − 0.173i)25-s + (−0.648 + 0.761i)27-s + (−0.188 − 0.326i)29-s + (−0.240 + 0.416i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.974 + 0.226i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.974 + 0.226i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0837976 - 0.731753i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0837976 - 0.731753i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.403 + 1.68i)T \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
good | 7 | \( 1 + (0.596 + 1.03i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.66 + 2.87i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.853 - 1.47i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 6.34T + 17T^{2} \) |
| 19 | \( 1 + 1.32T + 19T^{2} \) |
| 23 | \( 1 + (-3.43 + 5.94i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.01 + 1.75i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (1.33 - 2.32i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 3.32T + 37T^{2} \) |
| 41 | \( 1 + (1.16 - 2.00i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.17 + 5.49i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.38 + 11.0i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 1.02T + 53T^{2} \) |
| 59 | \( 1 + (5.83 - 10.1i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.86 - 8.43i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.28 - 9.15i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 1.06T + 71T^{2} \) |
| 73 | \( 1 - 14.0T + 73T^{2} \) |
| 79 | \( 1 + (-0.707 - 1.22i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (5.91 + 10.2i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 11T + 89T^{2} \) |
| 97 | \( 1 + (8.12 + 14.0i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12684399285656713903966906283, −8.751643659207049674103055279878, −8.445178587171499449697667917208, −7.13481794722201834412558914716, −6.77720985585551163532273266741, −5.75776094710384609721414470164, −4.38875773122656827541422039399, −3.13635317851626567319248955011, −2.15887507240626667393385120048, −0.34357217104186711540791382052,
2.20828205464276030176226976106, 3.35582713800095172587092019550, 4.55485084616701942663406850090, 5.11286124913026223312518543680, 6.27553565204935958337204025427, 7.52673988347490010777701073991, 8.348620981584695959257762375736, 9.355301355328427982761787077232, 9.656869188931337081959883361257, 10.89908962442816338355653392531