L(s) = 1 | + (−1.57 + 0.724i)3-s + (−1.81 + 1.30i)5-s + (3.85 + 2.22i)7-s + (1.94 − 2.28i)9-s + (0.724 − 1.25i)11-s + (2.12 − 1.22i)13-s + (1.90 − 3.37i)15-s + 3.89i·17-s − 0.550·19-s + (−7.67 − 0.707i)21-s + (−2.51 + 1.44i)23-s + (1.58 − 4.74i)25-s + (−1.41 + 5.00i)27-s + (−3 + 5.19i)29-s + (3.22 + 5.58i)31-s + ⋯ |
L(s) = 1 | + (−0.908 + 0.418i)3-s + (−0.811 + 0.584i)5-s + (1.45 + 0.840i)7-s + (0.649 − 0.760i)9-s + (0.218 − 0.378i)11-s + (0.588 − 0.339i)13-s + (0.492 − 0.870i)15-s + 0.945i·17-s − 0.126·19-s + (−1.67 − 0.154i)21-s + (−0.523 + 0.302i)23-s + (0.316 − 0.948i)25-s + (−0.272 + 0.962i)27-s + (−0.557 + 0.964i)29-s + (0.579 + 1.00i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.262 - 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.262 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.625308 + 0.818457i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.625308 + 0.818457i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.57 - 0.724i)T \) |
| 5 | \( 1 + (1.81 - 1.30i)T \) |
good | 7 | \( 1 + (-3.85 - 2.22i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.724 + 1.25i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.12 + 1.22i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 3.89iT - 17T^{2} \) |
| 19 | \( 1 + 0.550T + 19T^{2} \) |
| 23 | \( 1 + (2.51 - 1.44i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3 - 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.22 - 5.58i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 8iT - 37T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (6.45 + 3.72i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.389 - 0.224i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 8.44iT - 53T^{2} \) |
| 59 | \( 1 + (-5.62 - 9.74i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.224 + 0.389i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.18 - 4.72i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2.44T + 71T^{2} \) |
| 73 | \( 1 - 4.79iT - 73T^{2} \) |
| 79 | \( 1 + (-3.67 + 6.36i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-3.46 - 2i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 12.8T + 89T^{2} \) |
| 97 | \( 1 + (11.2 + 6.5i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79391579150234321915170006786, −10.16196294767204722174441750588, −8.662487563522191844612508237488, −8.274447375871303293248099250257, −7.09392594617220263982216680730, −6.10244122544745394796094422848, −5.26982558831089612806032912066, −4.33056773562902431073772473137, −3.30862509948901840703181187809, −1.50737976413979038467118872780,
0.66898803967955416033878543461, 1.85548504514922724952101685823, 4.10982176542913523214242395981, 4.56231524818238876539020097141, 5.54094547759228836725306246456, 6.76637344140690262571006927088, 7.68197135316107823031510946404, 8.047791899258637901840362570147, 9.287537516404179403019667148460, 10.44033024461097089033218514347