Properties

Label 2-72-9.4-c7-0-18
Degree $2$
Conductor $72$
Sign $-0.175 + 0.984i$
Analytic cond. $22.4917$
Root an. cond. $4.74254$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (43.9 − 15.9i)3-s + (130. − 225. i)5-s + (−113. − 197. i)7-s + (1.67e3 − 1.40e3i)9-s + (−1.73e3 − 3.01e3i)11-s + (728. − 1.26e3i)13-s + (2.13e3 − 1.20e4i)15-s − 1.46e4·17-s + 6.09e3·19-s + (−8.15e3 − 6.86e3i)21-s + (−1.63e3 + 2.83e3i)23-s + (5.03e3 + 8.72e3i)25-s + (5.14e4 − 8.84e4i)27-s + (−5.51e4 − 9.54e4i)29-s + (1.69e4 − 2.93e4i)31-s + ⋯
L(s)  = 1  + (0.940 − 0.341i)3-s + (0.466 − 0.808i)5-s + (−0.125 − 0.217i)7-s + (0.767 − 0.641i)9-s + (−0.393 − 0.682i)11-s + (0.0919 − 0.159i)13-s + (0.163 − 0.918i)15-s − 0.724·17-s + 0.203·19-s + (−0.192 − 0.161i)21-s + (−0.0280 + 0.0485i)23-s + (0.0644 + 0.111i)25-s + (0.502 − 0.864i)27-s + (−0.419 − 0.726i)29-s + (0.102 − 0.176i)31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.175 + 0.984i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.175 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72\)    =    \(2^{3} \cdot 3^{2}\)
Sign: $-0.175 + 0.984i$
Analytic conductor: \(22.4917\)
Root analytic conductor: \(4.74254\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{72} (49, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 72,\ (\ :7/2),\ -0.175 + 0.984i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.66028 - 1.98288i\)
\(L(\frac12)\) \(\approx\) \(1.66028 - 1.98288i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (-43.9 + 15.9i)T \)
good5 \( 1 + (-130. + 225. i)T + (-3.90e4 - 6.76e4i)T^{2} \)
7 \( 1 + (113. + 197. i)T + (-4.11e5 + 7.13e5i)T^{2} \)
11 \( 1 + (1.73e3 + 3.01e3i)T + (-9.74e6 + 1.68e7i)T^{2} \)
13 \( 1 + (-728. + 1.26e3i)T + (-3.13e7 - 5.43e7i)T^{2} \)
17 \( 1 + 1.46e4T + 4.10e8T^{2} \)
19 \( 1 - 6.09e3T + 8.93e8T^{2} \)
23 \( 1 + (1.63e3 - 2.83e3i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (5.51e4 + 9.54e4i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 + (-1.69e4 + 2.93e4i)T + (-1.37e10 - 2.38e10i)T^{2} \)
37 \( 1 + 1.05e5T + 9.49e10T^{2} \)
41 \( 1 + (-3.37e5 + 5.84e5i)T + (-9.73e10 - 1.68e11i)T^{2} \)
43 \( 1 + (3.21e5 + 5.56e5i)T + (-1.35e11 + 2.35e11i)T^{2} \)
47 \( 1 + (1.22e5 + 2.11e5i)T + (-2.53e11 + 4.38e11i)T^{2} \)
53 \( 1 - 1.83e6T + 1.17e12T^{2} \)
59 \( 1 + (1.06e6 - 1.84e6i)T + (-1.24e12 - 2.15e12i)T^{2} \)
61 \( 1 + (-8.33e5 - 1.44e6i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (2.39e6 - 4.15e6i)T + (-3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 - 2.50e6T + 9.09e12T^{2} \)
73 \( 1 + 4.46e4T + 1.10e13T^{2} \)
79 \( 1 + (-3.33e6 - 5.77e6i)T + (-9.60e12 + 1.66e13i)T^{2} \)
83 \( 1 + (-9.91e5 - 1.71e6i)T + (-1.35e13 + 2.35e13i)T^{2} \)
89 \( 1 - 8.71e6T + 4.42e13T^{2} \)
97 \( 1 + (-4.29e5 - 7.44e5i)T + (-4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.33322433057654524076802767092, −12.03382744316789052717588348281, −10.43913140203606568058648343336, −9.190489352846134704350505827917, −8.426655663357742089509278015697, −7.11780785830671137415969811211, −5.55527057981047728064253663390, −3.88936142087890768928894422513, −2.30066689810280400919025096638, −0.793299496064183724279744059990, 2.00124211569920489911706671044, 3.11815778662942265690094067780, 4.71518408868993297414418972235, 6.50883209440623956780577501810, 7.70984012789235399209706434578, 9.065357163459289928214693064452, 10.01826987314991330909378257801, 10.98986749288381980673870967866, 12.64977683922760250476163081810, 13.66845090911873537806532590747

Graph of the $Z$-function along the critical line