Properties

Label 2-72-1.1-c21-0-15
Degree $2$
Conductor $72$
Sign $-1$
Analytic cond. $201.223$
Root an. cond. $14.1853$
Motivic weight $21$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.51e7·5-s − 8.40e8·7-s + 3.34e10·11-s − 3.01e11·13-s − 5.14e12·17-s + 4.56e13·19-s − 2.41e13·23-s − 2.47e14·25-s − 7.82e14·29-s + 8.00e15·31-s + 1.27e16·35-s + 2.06e16·37-s + 7.03e16·41-s + 6.95e15·43-s + 2.12e17·47-s + 1.48e17·49-s − 8.69e17·53-s − 5.06e17·55-s − 9.80e17·59-s + 5.62e18·61-s + 4.55e18·65-s + 2.36e18·67-s − 4.99e19·71-s + 2.63e19·73-s − 2.81e19·77-s + 1.05e20·79-s − 8.96e19·83-s + ⋯
L(s)  = 1  − 0.693·5-s − 1.12·7-s + 0.389·11-s − 0.605·13-s − 0.618·17-s + 1.70·19-s − 0.121·23-s − 0.519·25-s − 0.345·29-s + 1.75·31-s + 0.779·35-s + 0.706·37-s + 0.818·41-s + 0.0490·43-s + 0.589·47-s + 0.265·49-s − 0.682·53-s − 0.269·55-s − 0.249·59-s + 1.00·61-s + 0.419·65-s + 0.158·67-s − 1.82·71-s + 0.716·73-s − 0.437·77-s + 1.25·79-s − 0.634·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72\)    =    \(2^{3} \cdot 3^{2}\)
Sign: $-1$
Analytic conductor: \(201.223\)
Root analytic conductor: \(14.1853\)
Motivic weight: \(21\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 72,\ (\ :21/2),\ -1)\)

Particular Values

\(L(11)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 1.51e7T + 4.76e14T^{2} \)
7 \( 1 + 8.40e8T + 5.58e17T^{2} \)
11 \( 1 - 3.34e10T + 7.40e21T^{2} \)
13 \( 1 + 3.01e11T + 2.47e23T^{2} \)
17 \( 1 + 5.14e12T + 6.90e25T^{2} \)
19 \( 1 - 4.56e13T + 7.14e26T^{2} \)
23 \( 1 + 2.41e13T + 3.94e28T^{2} \)
29 \( 1 + 7.82e14T + 5.13e30T^{2} \)
31 \( 1 - 8.00e15T + 2.08e31T^{2} \)
37 \( 1 - 2.06e16T + 8.55e32T^{2} \)
41 \( 1 - 7.03e16T + 7.38e33T^{2} \)
43 \( 1 - 6.95e15T + 2.00e34T^{2} \)
47 \( 1 - 2.12e17T + 1.30e35T^{2} \)
53 \( 1 + 8.69e17T + 1.62e36T^{2} \)
59 \( 1 + 9.80e17T + 1.54e37T^{2} \)
61 \( 1 - 5.62e18T + 3.10e37T^{2} \)
67 \( 1 - 2.36e18T + 2.22e38T^{2} \)
71 \( 1 + 4.99e19T + 7.52e38T^{2} \)
73 \( 1 - 2.63e19T + 1.34e39T^{2} \)
79 \( 1 - 1.05e20T + 7.08e39T^{2} \)
83 \( 1 + 8.96e19T + 1.99e40T^{2} \)
89 \( 1 + 4.71e20T + 8.65e40T^{2} \)
97 \( 1 + 3.93e20T + 5.27e41T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.986630171118565773775475306098, −9.281142711085210556691252456695, −7.909854388073801255281178146408, −6.98046520115529787603391336888, −5.92212324661431647884442013531, −4.54387537888218552507104568206, −3.50234615089451164640075293818, −2.57130646842399645147706382979, −0.974003935306685786044762263199, 0, 0.974003935306685786044762263199, 2.57130646842399645147706382979, 3.50234615089451164640075293818, 4.54387537888218552507104568206, 5.92212324661431647884442013531, 6.98046520115529787603391336888, 7.909854388073801255281178146408, 9.281142711085210556691252456695, 9.986630171118565773775475306098

Graph of the $Z$-function along the critical line