| L(s) = 1 | − 1.51e7·5-s − 8.40e8·7-s + 3.34e10·11-s − 3.01e11·13-s − 5.14e12·17-s + 4.56e13·19-s − 2.41e13·23-s − 2.47e14·25-s − 7.82e14·29-s + 8.00e15·31-s + 1.27e16·35-s + 2.06e16·37-s + 7.03e16·41-s + 6.95e15·43-s + 2.12e17·47-s + 1.48e17·49-s − 8.69e17·53-s − 5.06e17·55-s − 9.80e17·59-s + 5.62e18·61-s + 4.55e18·65-s + 2.36e18·67-s − 4.99e19·71-s + 2.63e19·73-s − 2.81e19·77-s + 1.05e20·79-s − 8.96e19·83-s + ⋯ |
| L(s) = 1 | − 0.693·5-s − 1.12·7-s + 0.389·11-s − 0.605·13-s − 0.618·17-s + 1.70·19-s − 0.121·23-s − 0.519·25-s − 0.345·29-s + 1.75·31-s + 0.779·35-s + 0.706·37-s + 0.818·41-s + 0.0490·43-s + 0.589·47-s + 0.265·49-s − 0.682·53-s − 0.269·55-s − 0.249·59-s + 1.00·61-s + 0.419·65-s + 0.158·67-s − 1.82·71-s + 0.716·73-s − 0.437·77-s + 1.25·79-s − 0.634·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(11)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{23}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + 1.51e7T + 4.76e14T^{2} \) |
| 7 | \( 1 + 8.40e8T + 5.58e17T^{2} \) |
| 11 | \( 1 - 3.34e10T + 7.40e21T^{2} \) |
| 13 | \( 1 + 3.01e11T + 2.47e23T^{2} \) |
| 17 | \( 1 + 5.14e12T + 6.90e25T^{2} \) |
| 19 | \( 1 - 4.56e13T + 7.14e26T^{2} \) |
| 23 | \( 1 + 2.41e13T + 3.94e28T^{2} \) |
| 29 | \( 1 + 7.82e14T + 5.13e30T^{2} \) |
| 31 | \( 1 - 8.00e15T + 2.08e31T^{2} \) |
| 37 | \( 1 - 2.06e16T + 8.55e32T^{2} \) |
| 41 | \( 1 - 7.03e16T + 7.38e33T^{2} \) |
| 43 | \( 1 - 6.95e15T + 2.00e34T^{2} \) |
| 47 | \( 1 - 2.12e17T + 1.30e35T^{2} \) |
| 53 | \( 1 + 8.69e17T + 1.62e36T^{2} \) |
| 59 | \( 1 + 9.80e17T + 1.54e37T^{2} \) |
| 61 | \( 1 - 5.62e18T + 3.10e37T^{2} \) |
| 67 | \( 1 - 2.36e18T + 2.22e38T^{2} \) |
| 71 | \( 1 + 4.99e19T + 7.52e38T^{2} \) |
| 73 | \( 1 - 2.63e19T + 1.34e39T^{2} \) |
| 79 | \( 1 - 1.05e20T + 7.08e39T^{2} \) |
| 83 | \( 1 + 8.96e19T + 1.99e40T^{2} \) |
| 89 | \( 1 + 4.71e20T + 8.65e40T^{2} \) |
| 97 | \( 1 + 3.93e20T + 5.27e41T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.986630171118565773775475306098, −9.281142711085210556691252456695, −7.909854388073801255281178146408, −6.98046520115529787603391336888, −5.92212324661431647884442013531, −4.54387537888218552507104568206, −3.50234615089451164640075293818, −2.57130646842399645147706382979, −0.974003935306685786044762263199, 0,
0.974003935306685786044762263199, 2.57130646842399645147706382979, 3.50234615089451164640075293818, 4.54387537888218552507104568206, 5.92212324661431647884442013531, 6.98046520115529787603391336888, 7.909854388073801255281178146408, 9.281142711085210556691252456695, 9.986630171118565773775475306098