L(s) = 1 | − i·2-s + (0.707 − 0.707i)3-s − 4-s + (−2.30 + 2.30i)5-s + (−0.707 − 0.707i)6-s + (−0.707 − 0.707i)7-s + i·8-s − 1.00i·9-s + (2.30 + 2.30i)10-s + (1.30 + 1.30i)11-s + (−0.707 + 0.707i)12-s + 5.71·13-s + (−0.707 + 0.707i)14-s + 3.26i·15-s + 16-s + (1.64 + 3.77i)17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (0.408 − 0.408i)3-s − 0.5·4-s + (−1.03 + 1.03i)5-s + (−0.288 − 0.288i)6-s + (−0.267 − 0.267i)7-s + 0.353i·8-s − 0.333i·9-s + (0.729 + 0.729i)10-s + (0.393 + 0.393i)11-s + (−0.204 + 0.204i)12-s + 1.58·13-s + (−0.188 + 0.188i)14-s + 0.841i·15-s + 0.250·16-s + (0.399 + 0.916i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.879 + 0.476i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.879 + 0.476i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.39545 - 0.354017i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.39545 - 0.354017i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + (-0.707 + 0.707i)T \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
| 17 | \( 1 + (-1.64 - 3.77i)T \) |
good | 5 | \( 1 + (2.30 - 2.30i)T - 5iT^{2} \) |
| 11 | \( 1 + (-1.30 - 1.30i)T + 11iT^{2} \) |
| 13 | \( 1 - 5.71T + 13T^{2} \) |
| 19 | \( 1 + 5.00iT - 19T^{2} \) |
| 23 | \( 1 + (-4.58 - 4.58i)T + 23iT^{2} \) |
| 29 | \( 1 + (-6.80 + 6.80i)T - 29iT^{2} \) |
| 31 | \( 1 + (0.764 - 0.764i)T - 31iT^{2} \) |
| 37 | \( 1 + (1.17 - 1.17i)T - 37iT^{2} \) |
| 41 | \( 1 + (-8.19 - 8.19i)T + 41iT^{2} \) |
| 43 | \( 1 - 6.49iT - 43T^{2} \) |
| 47 | \( 1 + 4.87T + 47T^{2} \) |
| 53 | \( 1 + 12.9iT - 53T^{2} \) |
| 59 | \( 1 - 10.9iT - 59T^{2} \) |
| 61 | \( 1 + (-5.77 - 5.77i)T + 61iT^{2} \) |
| 67 | \( 1 + 10.1T + 67T^{2} \) |
| 71 | \( 1 + (-1.96 + 1.96i)T - 71iT^{2} \) |
| 73 | \( 1 + (-6.98 + 6.98i)T - 73iT^{2} \) |
| 79 | \( 1 + (5.84 + 5.84i)T + 79iT^{2} \) |
| 83 | \( 1 - 13.5iT - 83T^{2} \) |
| 89 | \( 1 + 17.6T + 89T^{2} \) |
| 97 | \( 1 + (-3.89 + 3.89i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.53702692409146537263640269882, −9.591551514676736874702159271519, −8.578808028593953949272777617675, −7.84980265234682434115289828332, −6.91415312031766194305481699400, −6.14719908098918774565003487232, −4.39458439364771011187987417555, −3.55443718377146751285287298887, −2.84550404615348220698302826238, −1.18426477196190134429437411213,
0.957165640463134487487687134222, 3.28718849543678347207527244783, 4.05961335181483651888291302465, 5.01492783483610176904902161426, 5.97935184053618849402935264151, 7.10422162949242333646128884587, 8.149606297856298134715887806548, 8.708711068641555629964737499391, 9.141966346357453348438818794947, 10.40949581223917471616950074011