L(s) = 1 | + i·2-s + (−0.707 − 0.707i)3-s − 4-s + (0.943 + 0.943i)5-s + (0.707 − 0.707i)6-s + (0.707 − 0.707i)7-s − i·8-s + 1.00i·9-s + (−0.943 + 0.943i)10-s + (−1.94 + 1.94i)11-s + (0.707 + 0.707i)12-s + 5.16·13-s + (0.707 + 0.707i)14-s − 1.33i·15-s + 16-s + (−1.16 − 3.95i)17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s + (−0.408 − 0.408i)3-s − 0.5·4-s + (0.421 + 0.421i)5-s + (0.288 − 0.288i)6-s + (0.267 − 0.267i)7-s − 0.353i·8-s + 0.333i·9-s + (−0.298 + 0.298i)10-s + (−0.585 + 0.585i)11-s + (0.204 + 0.204i)12-s + 1.43·13-s + (0.188 + 0.188i)14-s − 0.344i·15-s + 0.250·16-s + (−0.282 − 0.959i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.367 - 0.930i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.367 - 0.930i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.14287 + 0.777251i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.14287 + 0.777251i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
| 7 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 + (1.16 + 3.95i)T \) |
good | 5 | \( 1 + (-0.943 - 0.943i)T + 5iT^{2} \) |
| 11 | \( 1 + (1.94 - 1.94i)T - 11iT^{2} \) |
| 13 | \( 1 - 5.16T + 13T^{2} \) |
| 19 | \( 1 - 5.94iT - 19T^{2} \) |
| 23 | \( 1 + (-1.04 + 1.04i)T - 23iT^{2} \) |
| 29 | \( 1 + (-5.04 - 5.04i)T + 29iT^{2} \) |
| 31 | \( 1 + (-6.63 - 6.63i)T + 31iT^{2} \) |
| 37 | \( 1 + (-5.06 - 5.06i)T + 37iT^{2} \) |
| 41 | \( 1 + (1.84 - 1.84i)T - 41iT^{2} \) |
| 43 | \( 1 - 4.84iT - 43T^{2} \) |
| 47 | \( 1 + 4.35T + 47T^{2} \) |
| 53 | \( 1 + 8.34iT - 53T^{2} \) |
| 59 | \( 1 - 12.6iT - 59T^{2} \) |
| 61 | \( 1 + (-5.43 + 5.43i)T - 61iT^{2} \) |
| 67 | \( 1 + 0.646T + 67T^{2} \) |
| 71 | \( 1 + (-4.92 - 4.92i)T + 71iT^{2} \) |
| 73 | \( 1 + (1.02 + 1.02i)T + 73iT^{2} \) |
| 79 | \( 1 + (-5.04 + 5.04i)T - 79iT^{2} \) |
| 83 | \( 1 - 6.49iT - 83T^{2} \) |
| 89 | \( 1 + 4.94T + 89T^{2} \) |
| 97 | \( 1 + (12.4 + 12.4i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42911088134347547432556800838, −9.891841156942160082119153612579, −8.524860646248397751193783523273, −7.994436514096310292018449440107, −6.82215835486708244704571623846, −6.39309280837298812752244461370, −5.33446657957497857853065276724, −4.43256851496600758645287739439, −2.95379803198189842803566425553, −1.31239220223900765985344025818,
0.916647377952152762149870564177, 2.42715325810538820821696606317, 3.72096684597719027417296981333, 4.71118379085761618306452555142, 5.66246531434053381063487934448, 6.38145205061114279960051225253, 8.021743860359860409737337739051, 8.736754532127593906579094187866, 9.454944015506203973124989858322, 10.43926613401033984977901289389