Properties

Label 2-714-119.10-c1-0-2
Degree $2$
Conductor $714$
Sign $-0.973 - 0.226i$
Analytic cond. $5.70131$
Root an. cond. $2.38774$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.991 − 0.130i)2-s + (0.442 + 0.896i)3-s + (0.965 − 0.258i)4-s + (−2.94 + 2.58i)5-s + (0.555 + 0.831i)6-s + (−2.43 + 1.02i)7-s + (0.923 − 0.382i)8-s + (−0.608 + 0.793i)9-s + (−2.58 + 2.94i)10-s + (−0.0584 + 0.00382i)11-s + (0.659 + 0.751i)12-s + (−3.92 − 3.92i)13-s + (−2.28 + 1.33i)14-s + (−3.61 − 1.49i)15-s + (0.866 − 0.5i)16-s + (−1.36 − 3.89i)17-s + ⋯
L(s)  = 1  + (0.701 − 0.0922i)2-s + (0.255 + 0.517i)3-s + (0.482 − 0.129i)4-s + (−1.31 + 1.15i)5-s + (0.226 + 0.339i)6-s + (−0.921 + 0.388i)7-s + (0.326 − 0.135i)8-s + (−0.202 + 0.264i)9-s + (−0.816 + 0.931i)10-s + (−0.0176 + 0.00115i)11-s + (0.190 + 0.217i)12-s + (−1.08 − 1.08i)13-s + (−0.609 + 0.357i)14-s + (−0.934 − 0.387i)15-s + (0.216 − 0.125i)16-s + (−0.329 − 0.944i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.973 - 0.226i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.973 - 0.226i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(714\)    =    \(2 \cdot 3 \cdot 7 \cdot 17\)
Sign: $-0.973 - 0.226i$
Analytic conductor: \(5.70131\)
Root analytic conductor: \(2.38774\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{714} (367, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 714,\ (\ :1/2),\ -0.973 - 0.226i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0993687 + 0.864237i\)
\(L(\frac12)\) \(\approx\) \(0.0993687 + 0.864237i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.991 + 0.130i)T \)
3 \( 1 + (-0.442 - 0.896i)T \)
7 \( 1 + (2.43 - 1.02i)T \)
17 \( 1 + (1.36 + 3.89i)T \)
good5 \( 1 + (2.94 - 2.58i)T + (0.652 - 4.95i)T^{2} \)
11 \( 1 + (0.0584 - 0.00382i)T + (10.9 - 1.43i)T^{2} \)
13 \( 1 + (3.92 + 3.92i)T + 13iT^{2} \)
19 \( 1 + (-0.607 - 4.61i)T + (-18.3 + 4.91i)T^{2} \)
23 \( 1 + (1.58 + 0.779i)T + (14.0 + 18.2i)T^{2} \)
29 \( 1 + (-1.83 - 9.22i)T + (-26.7 + 11.0i)T^{2} \)
31 \( 1 + (3.30 - 1.63i)T + (18.8 - 24.5i)T^{2} \)
37 \( 1 + (-0.137 + 2.10i)T + (-36.6 - 4.82i)T^{2} \)
41 \( 1 + (2.01 - 10.1i)T + (-37.8 - 15.6i)T^{2} \)
43 \( 1 + (-1.12 - 2.72i)T + (-30.4 + 30.4i)T^{2} \)
47 \( 1 + (3.06 - 11.4i)T + (-40.7 - 23.5i)T^{2} \)
53 \( 1 + (-6.05 - 7.89i)T + (-13.7 + 51.1i)T^{2} \)
59 \( 1 + (-4.06 - 0.535i)T + (56.9 + 15.2i)T^{2} \)
61 \( 1 + (-1.60 - 4.71i)T + (-48.3 + 37.1i)T^{2} \)
67 \( 1 + (8.49 + 4.90i)T + (33.5 + 58.0i)T^{2} \)
71 \( 1 + (-4.77 - 3.19i)T + (27.1 + 65.5i)T^{2} \)
73 \( 1 + (4.96 + 1.68i)T + (57.9 + 44.4i)T^{2} \)
79 \( 1 + (-3.95 + 8.01i)T + (-48.0 - 62.6i)T^{2} \)
83 \( 1 + (-3.46 + 8.36i)T + (-58.6 - 58.6i)T^{2} \)
89 \( 1 + (0.739 + 0.198i)T + (77.0 + 44.5i)T^{2} \)
97 \( 1 + (4.91 - 0.976i)T + (89.6 - 37.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72730245744596185940967743477, −10.26118645113638780666019733771, −9.260521819876874013665445746058, −7.950607974566904281829172218287, −7.32682668493371355297028106191, −6.43408842584421578172588361660, −5.29084077605253460358832208243, −4.20865061861700085507897636253, −3.10101808066482816154836765750, −2.87650177607124742983166384964, 0.32583558890306918623734189714, 2.21592358147835196703823601777, 3.74678341826993688113773040514, 4.26385650935211943025389490848, 5.35551989816302302602788648332, 6.70420651338258323707930934884, 7.24799459649366726984713394159, 8.188283936775295144318051967153, 8.987311848908969064664032551904, 9.937295128484996741951013132924

Graph of the $Z$-function along the critical line