Properties

Label 2-704-1.1-c5-0-22
Degree $2$
Conductor $704$
Sign $1$
Analytic cond. $112.910$
Root an. cond. $10.6259$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 15·3-s + 19·5-s − 10·7-s − 18·9-s − 121·11-s + 1.14e3·13-s − 285·15-s + 686·17-s − 384·19-s + 150·21-s − 3.70e3·23-s − 2.76e3·25-s + 3.91e3·27-s + 5.42e3·29-s + 6.44e3·31-s + 1.81e3·33-s − 190·35-s − 1.20e4·37-s − 1.72e4·39-s − 1.52e3·41-s − 4.02e3·43-s − 342·45-s − 7.16e3·47-s − 1.67e4·49-s − 1.02e4·51-s + 2.98e4·53-s − 2.29e3·55-s + ⋯
L(s)  = 1  − 0.962·3-s + 0.339·5-s − 0.0771·7-s − 0.0740·9-s − 0.301·11-s + 1.88·13-s − 0.327·15-s + 0.575·17-s − 0.244·19-s + 0.0742·21-s − 1.46·23-s − 0.884·25-s + 1.03·27-s + 1.19·29-s + 1.20·31-s + 0.290·33-s − 0.0262·35-s − 1.44·37-s − 1.81·39-s − 0.141·41-s − 0.332·43-s − 0.0251·45-s − 0.473·47-s − 0.994·49-s − 0.553·51-s + 1.46·53-s − 0.102·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 704 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(704\)    =    \(2^{6} \cdot 11\)
Sign: $1$
Analytic conductor: \(112.910\)
Root analytic conductor: \(10.6259\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 704,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.402158586\)
\(L(\frac12)\) \(\approx\) \(1.402158586\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 + p^{2} T \)
good3 \( 1 + 5 p T + p^{5} T^{2} \)
5 \( 1 - 19 T + p^{5} T^{2} \)
7 \( 1 + 10 T + p^{5} T^{2} \)
13 \( 1 - 1148 T + p^{5} T^{2} \)
17 \( 1 - 686 T + p^{5} T^{2} \)
19 \( 1 + 384 T + p^{5} T^{2} \)
23 \( 1 + 3709 T + p^{5} T^{2} \)
29 \( 1 - 5424 T + p^{5} T^{2} \)
31 \( 1 - 6443 T + p^{5} T^{2} \)
37 \( 1 + 12063 T + p^{5} T^{2} \)
41 \( 1 + 1528 T + p^{5} T^{2} \)
43 \( 1 + 4026 T + p^{5} T^{2} \)
47 \( 1 + 7168 T + p^{5} T^{2} \)
53 \( 1 - 29862 T + p^{5} T^{2} \)
59 \( 1 + 6461 T + p^{5} T^{2} \)
61 \( 1 - 16980 T + p^{5} T^{2} \)
67 \( 1 - 29999 T + p^{5} T^{2} \)
71 \( 1 + 31023 T + p^{5} T^{2} \)
73 \( 1 - 1924 T + p^{5} T^{2} \)
79 \( 1 + 65138 T + p^{5} T^{2} \)
83 \( 1 + 102714 T + p^{5} T^{2} \)
89 \( 1 - 17415 T + p^{5} T^{2} \)
97 \( 1 - 66905 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.05499657251013822977265693954, −8.628844629049000963468271476091, −8.148970473999582096743533389222, −6.69271416025865844105496504440, −6.04795445252192341060801028039, −5.45312806199095787377610092797, −4.25040718987858735335098083698, −3.15663569742535226950396922649, −1.70508900018107899854435541637, −0.59623933633395996698395458607, 0.59623933633395996698395458607, 1.70508900018107899854435541637, 3.15663569742535226950396922649, 4.25040718987858735335098083698, 5.45312806199095787377610092797, 6.04795445252192341060801028039, 6.69271416025865844105496504440, 8.148970473999582096743533389222, 8.628844629049000963468271476091, 10.05499657251013822977265693954

Graph of the $Z$-function along the critical line