| L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + (0.515 + 0.297i)5-s + (1.45 − 0.838i)7-s − 0.999i·8-s + 0.594·10-s + (−0.416 + 0.240i)11-s + (3.56 + 0.567i)13-s + (0.838 − 1.45i)14-s + (−0.5 − 0.866i)16-s + 2.09·17-s + 0.480i·19-s + (0.515 − 0.297i)20-s + (−0.240 + 0.416i)22-s + (1.83 − 3.17i)23-s + ⋯ |
| L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + (0.230 + 0.132i)5-s + (0.548 − 0.316i)7-s − 0.353i·8-s + 0.188·10-s + (−0.125 + 0.0724i)11-s + (0.987 + 0.157i)13-s + (0.224 − 0.388i)14-s + (−0.125 − 0.216i)16-s + 0.507·17-s + 0.110i·19-s + (0.115 − 0.0664i)20-s + (−0.0512 + 0.0887i)22-s + (0.382 − 0.662i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.705 + 0.709i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.705 + 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.22942 - 0.926973i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.22942 - 0.926973i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.56 - 0.567i)T \) |
| good | 5 | \( 1 + (-0.515 - 0.297i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.45 + 0.838i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.416 - 0.240i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 - 2.09T + 17T^{2} \) |
| 19 | \( 1 - 0.480iT - 19T^{2} \) |
| 23 | \( 1 + (-1.83 + 3.17i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.23 + 2.13i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.993 - 0.573i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 3.65iT - 37T^{2} \) |
| 41 | \( 1 + (-8.58 - 4.95i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.45 + 5.98i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (5.40 - 3.12i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 5.08T + 53T^{2} \) |
| 59 | \( 1 + (-8.13 - 4.69i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (3.90 + 6.76i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (12.4 + 7.19i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 6.51iT - 71T^{2} \) |
| 73 | \( 1 - 5.91iT - 73T^{2} \) |
| 79 | \( 1 + (-1.02 - 1.78i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (9.57 - 5.53i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 9.48iT - 89T^{2} \) |
| 97 | \( 1 + (8.41 - 4.85i)T + (48.5 - 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49410209052021618177041972864, −9.717066732556802214401857735673, −8.579780653122690991659119920374, −7.73154410452094398895859850978, −6.58542408322138423306129744978, −5.81540534142483901229386943669, −4.72640719593746381417411072360, −3.85236720584731733517114644776, −2.62710185549187051602414742813, −1.28606684486683051752915762382,
1.60151343336287990313854079832, 3.08103187149462782661534812945, 4.12762690748484553119969385242, 5.34165087034139344416376017067, 5.81725365099798842751864612680, 7.00326527939483287440494406414, 7.893027926862709056775711823610, 8.701383467181831041511665008553, 9.592802863654586792566496833266, 10.78315197199849027285797701497