L(s) = 1 | + (−0.866 − 0.5i)2-s + (0.499 + 0.866i)4-s + (−0.515 + 0.297i)5-s + (−1.45 − 0.838i)7-s − 0.999i·8-s + 0.594·10-s + (0.416 + 0.240i)11-s + (−2.27 + 2.79i)13-s + (0.838 + 1.45i)14-s + (−0.5 + 0.866i)16-s + 2.09·17-s + 0.480i·19-s + (−0.515 − 0.297i)20-s + (−0.240 − 0.416i)22-s + (1.83 + 3.17i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (−0.230 + 0.132i)5-s + (−0.548 − 0.316i)7-s − 0.353i·8-s + 0.188·10-s + (0.125 + 0.0724i)11-s + (−0.630 + 0.776i)13-s + (0.224 + 0.388i)14-s + (−0.125 + 0.216i)16-s + 0.507·17-s + 0.110i·19-s + (−0.115 − 0.0664i)20-s + (−0.0512 − 0.0887i)22-s + (0.382 + 0.662i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0514 - 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 702 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0514 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.449111 + 0.426561i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.449111 + 0.426561i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (2.27 - 2.79i)T \) |
good | 5 | \( 1 + (0.515 - 0.297i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (1.45 + 0.838i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.416 - 0.240i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 - 2.09T + 17T^{2} \) |
| 19 | \( 1 - 0.480iT - 19T^{2} \) |
| 23 | \( 1 + (-1.83 - 3.17i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.23 - 2.13i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (0.993 - 0.573i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 3.65iT - 37T^{2} \) |
| 41 | \( 1 + (8.58 - 4.95i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.45 - 5.98i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.40 - 3.12i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 5.08T + 53T^{2} \) |
| 59 | \( 1 + (8.13 - 4.69i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.90 - 6.76i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-12.4 + 7.19i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6.51iT - 71T^{2} \) |
| 73 | \( 1 - 5.91iT - 73T^{2} \) |
| 79 | \( 1 + (-1.02 + 1.78i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-9.57 - 5.53i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 9.48iT - 89T^{2} \) |
| 97 | \( 1 + (-8.41 - 4.85i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.53784950722921844131939266478, −9.717134046591096311794343673862, −9.191975476734661313342310047898, −8.054909145780345266753168008836, −7.24173409863113817090023553298, −6.52788358391031013445937285714, −5.18963101357437203783283513701, −3.91726646989132241066823472582, −2.99159139461278388439131841402, −1.51188304108553934555700350021,
0.39981135895463686272325649640, 2.28471901108494994653993376125, 3.54572538652058235297189148833, 4.96302354597972697708304777223, 5.87227407244111366386731664025, 6.81349916462597342258591268517, 7.71263894163328212274991642091, 8.490814292974824385504276073409, 9.356124067089974640907835900465, 10.12415685503754235091124806959