Properties

Label 2-700-5.4-c3-0-12
Degree $2$
Conductor $700$
Sign $0.894 - 0.447i$
Analytic cond. $41.3013$
Root an. cond. $6.42661$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s + 7i·7-s + 26·9-s − 7·11-s − 23i·13-s + 25i·17-s + 62·19-s − 7·21-s − 86i·23-s + 53i·27-s + 29·29-s − 12·31-s − 7i·33-s + 150i·37-s + 23·39-s + ⋯
L(s)  = 1  + 0.192i·3-s + 0.377i·7-s + 0.962·9-s − 0.191·11-s − 0.490i·13-s + 0.356i·17-s + 0.748·19-s − 0.0727·21-s − 0.779i·23-s + 0.377i·27-s + 0.185·29-s − 0.0695·31-s − 0.0369i·33-s + 0.666i·37-s + 0.0944·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(700\)    =    \(2^{2} \cdot 5^{2} \cdot 7\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(41.3013\)
Root analytic conductor: \(6.42661\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{700} (449, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 700,\ (\ :3/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.186829750\)
\(L(\frac12)\) \(\approx\) \(2.186829750\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - 7iT \)
good3 \( 1 - iT - 27T^{2} \)
11 \( 1 + 7T + 1.33e3T^{2} \)
13 \( 1 + 23iT - 2.19e3T^{2} \)
17 \( 1 - 25iT - 4.91e3T^{2} \)
19 \( 1 - 62T + 6.85e3T^{2} \)
23 \( 1 + 86iT - 1.21e4T^{2} \)
29 \( 1 - 29T + 2.43e4T^{2} \)
31 \( 1 + 12T + 2.97e4T^{2} \)
37 \( 1 - 150iT - 5.06e4T^{2} \)
41 \( 1 - 204T + 6.89e4T^{2} \)
43 \( 1 + 178iT - 7.95e4T^{2} \)
47 \( 1 + 33iT - 1.03e5T^{2} \)
53 \( 1 - 452iT - 1.48e5T^{2} \)
59 \( 1 + 120T + 2.05e5T^{2} \)
61 \( 1 - 920T + 2.26e5T^{2} \)
67 \( 1 - 300iT - 3.00e5T^{2} \)
71 \( 1 - 520T + 3.57e5T^{2} \)
73 \( 1 - 370iT - 3.89e5T^{2} \)
79 \( 1 - 1.01e3T + 4.93e5T^{2} \)
83 \( 1 + 636iT - 5.71e5T^{2} \)
89 \( 1 + 292T + 7.04e5T^{2} \)
97 \( 1 - 1.38e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13580241389257044186361624708, −9.349417299713022560125209002153, −8.386369631358247173761107018320, −7.52899976365169017191987097715, −6.60443875788375561258255530790, −5.55452153637570970004715625874, −4.63821095685446429097621657659, −3.57705631509768611050649491747, −2.35304843500013363358561034160, −0.953898241619002643545702983230, 0.819270138761063546520282987797, 2.01503445543806695992159059438, 3.44841923958752271731378756645, 4.43891753240379548869642583566, 5.43052101960937810054674137538, 6.63990951691046760910314853794, 7.33041749886971644816062983380, 8.089207104417518486162025165945, 9.355947215599249852431263773139, 9.846969556068472240794016135431

Graph of the $Z$-function along the critical line