L(s) = 1 | + (−2.87 + 2.87i)3-s + (1.87 + 1.87i)7-s − 7.48i·9-s − 3.51·11-s + (−0.612 + 0.612i)13-s + (−14.0 − 14.0i)17-s + 2.25i·19-s − 10.7·21-s + (−29.7 + 29.7i)23-s + (−4.35 − 4.35i)27-s − 16.9i·29-s + 33.6·31-s + (10.0 − 10.0i)33-s + (−14.7 − 14.7i)37-s − 3.51i·39-s + ⋯ |
L(s) = 1 | + (−0.956 + 0.956i)3-s + (0.267 + 0.267i)7-s − 0.831i·9-s − 0.319·11-s + (−0.0471 + 0.0471i)13-s + (−0.829 − 0.829i)17-s + 0.118i·19-s − 0.511·21-s + (−1.29 + 1.29i)23-s + (−0.161 − 0.161i)27-s − 0.583i·29-s + 1.08·31-s + (0.305 − 0.305i)33-s + (−0.399 − 0.399i)37-s − 0.0901i·39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.229 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.4126684581\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4126684581\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-1.87 - 1.87i)T \) |
good | 3 | \( 1 + (2.87 - 2.87i)T - 9iT^{2} \) |
| 11 | \( 1 + 3.51T + 121T^{2} \) |
| 13 | \( 1 + (0.612 - 0.612i)T - 169iT^{2} \) |
| 17 | \( 1 + (14.0 + 14.0i)T + 289iT^{2} \) |
| 19 | \( 1 - 2.25iT - 361T^{2} \) |
| 23 | \( 1 + (29.7 - 29.7i)T - 529iT^{2} \) |
| 29 | \( 1 + 16.9iT - 841T^{2} \) |
| 31 | \( 1 - 33.6T + 961T^{2} \) |
| 37 | \( 1 + (14.7 + 14.7i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 5.67T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-38.4 + 38.4i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (49.7 + 49.7i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-53.7 + 53.7i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 39.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 98.9T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-31.2 - 31.2i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 138.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-79.4 + 79.4i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 151. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (42.9 - 42.9i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 117. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (42.3 + 42.3i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09229957925814143117296417040, −9.491138601671185427954051645226, −8.424920002489977405200979928347, −7.41239276791746491630212527368, −6.24130501182097605604810641459, −5.42329848618631698928835763186, −4.69173697623638667940781308692, −3.72314519165070437506503815103, −2.17561805324288940297534856810, −0.18094683282675033443062977800,
1.16966620294801121838136904517, 2.42410729923963878812214649680, 4.11053084263596782838712946526, 5.11851300919088623136068091824, 6.26223968667620232887073390362, 6.63757075267476662144193361303, 7.79393778454083234684384858853, 8.423609239401519962260723749286, 9.712811576915664410880670327971, 10.74707713208799123437806250070