| L(s) = 1 | + (0.334 + 1.37i)2-s + (−0.963 + 0.556i)3-s + (−1.77 + 0.919i)4-s + (−1.08 − 1.13i)6-s + (−1.26 − 2.32i)7-s + (−1.85 − 2.13i)8-s + (−0.880 + 1.52i)9-s + (−1.48 + 0.856i)11-s + (1.20 − 1.87i)12-s + 2.45·13-s + (2.77 − 2.51i)14-s + (2.30 − 3.26i)16-s + (−3.10 − 5.38i)17-s + (−2.39 − 0.699i)18-s + (−0.108 + 0.187i)19-s + ⋯ |
| L(s) = 1 | + (0.236 + 0.971i)2-s + (−0.556 + 0.321i)3-s + (−0.888 + 0.459i)4-s + (−0.443 − 0.464i)6-s + (−0.477 − 0.878i)7-s + (−0.656 − 0.753i)8-s + (−0.293 + 0.508i)9-s + (−0.447 + 0.258i)11-s + (0.346 − 0.541i)12-s + 0.682·13-s + (0.740 − 0.672i)14-s + (0.577 − 0.816i)16-s + (−0.754 − 1.30i)17-s + (−0.563 − 0.164i)18-s + (−0.0248 + 0.0430i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.789 + 0.614i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.789 + 0.614i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.525578 - 0.180488i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.525578 - 0.180488i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.334 - 1.37i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (1.26 + 2.32i)T \) |
| good | 3 | \( 1 + (0.963 - 0.556i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (1.48 - 0.856i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 2.45T + 13T^{2} \) |
| 17 | \( 1 + (3.10 + 5.38i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.108 - 0.187i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.28 + 5.68i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 2.47T + 29T^{2} \) |
| 31 | \( 1 + (0.0819 + 0.141i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (6.66 + 3.84i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 8.34iT - 41T^{2} \) |
| 43 | \( 1 + 1.89T + 43T^{2} \) |
| 47 | \( 1 + (-10.1 - 5.85i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (11.2 - 6.51i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.14 + 3.71i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.06 - 3.50i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.58 + 4.48i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 5.04iT - 71T^{2} \) |
| 73 | \( 1 + (3.80 + 6.59i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (13.8 + 7.97i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 5.47iT - 83T^{2} \) |
| 89 | \( 1 + (-1.54 - 0.891i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 10.5T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46522540268734856650343976293, −9.366627727722744312608610704667, −8.562450748165650350137362710628, −7.49586709956144463560194075019, −6.82942060362526651088968013668, −5.90396397350794226711279256783, −4.91294124927743263984731142104, −4.25935289730491875255866971111, −2.90992581673395980628310404651, −0.30040099526331380388538522592,
1.45895676799478967564129067289, 2.87994549869289974918646775712, 3.78102662591744307509975462427, 5.20182225936571226763101377127, 5.91178729630141248734517978533, 6.66842412595691916593743417540, 8.363082164444234604064543872557, 8.874571960338881723143663705194, 9.822621139494596176563650625900, 10.76657501982095940471138370996