L(s) = 1 | + (−0.365 + 1.36i)2-s + (−0.739 − 1.28i)3-s + (−1.73 − 0.998i)4-s + (2.02 − 0.542i)6-s + (2.56 − 0.664i)7-s + (1.99 − 2.00i)8-s + (0.406 − 0.703i)9-s + (−5.32 + 3.07i)11-s + (0.00185 + 2.95i)12-s − 3.33i·13-s + (−0.0291 + 3.74i)14-s + (2.00 + 3.46i)16-s + (2.20 − 1.27i)17-s + (0.812 + 0.811i)18-s + (−0.352 + 0.611i)19-s + ⋯ |
L(s) = 1 | + (−0.258 + 0.966i)2-s + (−0.426 − 0.739i)3-s + (−0.866 − 0.499i)4-s + (0.824 − 0.221i)6-s + (0.967 − 0.250i)7-s + (0.706 − 0.707i)8-s + (0.135 − 0.234i)9-s + (−1.60 + 0.927i)11-s + (0.000534 + 0.853i)12-s − 0.924i·13-s + (−0.00779 + 0.999i)14-s + (0.501 + 0.865i)16-s + (0.536 − 0.309i)17-s + (0.191 + 0.191i)18-s + (−0.0809 + 0.140i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.127 + 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.127 + 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.550497 - 0.484396i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.550497 - 0.484396i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.365 - 1.36i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-2.56 + 0.664i)T \) |
good | 3 | \( 1 + (0.739 + 1.28i)T + (-1.5 + 2.59i)T^{2} \) |
| 11 | \( 1 + (5.32 - 3.07i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 3.33iT - 13T^{2} \) |
| 17 | \( 1 + (-2.20 + 1.27i)T + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.352 - 0.611i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.70 + 0.983i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 5.17T + 29T^{2} \) |
| 31 | \( 1 + (3.40 + 5.89i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-3.40 + 5.90i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 2.53iT - 41T^{2} \) |
| 43 | \( 1 + 4.59iT - 43T^{2} \) |
| 47 | \( 1 + (-2.18 + 3.78i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.77 + 4.80i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (3.40 + 5.89i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.07 - 1.77i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.51 - 1.45i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 3.37iT - 71T^{2} \) |
| 73 | \( 1 + (-2.20 + 1.27i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.38 + 3.10i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 4.70T + 83T^{2} \) |
| 89 | \( 1 + (-5.19 - 3.00i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 9.46iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21484143505627836160033015862, −9.322598558090291938241343910739, −7.914374401733804168665476205302, −7.75448789660741441005829061406, −6.96689532503715047207485158006, −5.66096293698986401947341620032, −5.25072849191562433543382911694, −4.01379421119732954781678451757, −2.00953474643114207310552591528, −0.44898949171452496267332892760,
1.67076854007074716064317914315, 2.94166866355406867025771081161, 4.21699410091224705861219087230, 5.01589190412585580267849496042, 5.71260975925826522472132261572, 7.60081847337556365237178123671, 8.176920643292646545500539278753, 9.124079263197035818746007163915, 10.03170875537220870422626230593, 10.84282959404232809065815655591