Properties

Label 8-700e4-1.1-c1e4-0-1
Degree $8$
Conductor $240100000000$
Sign $1$
Analytic cond. $976.114$
Root an. cond. $2.36421$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·2-s + 8·4-s − 8·8-s − 4·16-s − 20·29-s + 32·32-s + 12·37-s + 10·49-s + 16·53-s + 80·58-s − 64·64-s − 48·74-s − 18·81-s − 40·98-s − 64·106-s − 60·109-s − 44·113-s − 160·116-s − 6·121-s + 127-s + 64·128-s + 131-s + 137-s + 139-s + 96·148-s + 149-s + 151-s + ⋯
L(s)  = 1  − 2.82·2-s + 4·4-s − 2.82·8-s − 16-s − 3.71·29-s + 5.65·32-s + 1.97·37-s + 10/7·49-s + 2.19·53-s + 10.5·58-s − 8·64-s − 5.57·74-s − 2·81-s − 4.04·98-s − 6.21·106-s − 5.74·109-s − 4.13·113-s − 14.8·116-s − 0.545·121-s + 0.0887·127-s + 5.65·128-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 7.89·148-s + 0.0819·149-s + 0.0813·151-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{8} \cdot 5^{8} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{8} \cdot 5^{8} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(976.114\)
Root analytic conductor: \(2.36421\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{8} \cdot 5^{8} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(0.08531349876\)
\(L(\frac12)\) \(\approx\) \(0.08531349876\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2$C_2$ \( ( 1 + p T + p T^{2} )^{2} \)
5 \( 1 \)
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \)
good3$C_2^2$ \( ( 1 + p^{2} T^{4} )^{2} \)
11$C_2^2$ \( ( 1 + 3 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 10 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 + p T^{2} )^{4} \)
23$C_2^2$ \( ( 1 - 45 T^{2} + p^{2} T^{4} )^{2} \)
29$C_2$ \( ( 1 + 5 T + p T^{2} )^{4} \)
31$C_2^2$ \( ( 1 + 8 T^{2} + p^{2} T^{4} )^{2} \)
37$C_2$ \( ( 1 - 3 T + p T^{2} )^{4} \)
41$C_2^2$ \( ( 1 + 68 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2^2$ \( ( 1 + 35 T^{2} + p^{2} T^{4} )^{2} \)
47$C_2^2$ \( ( 1 + 70 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 - 32 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2^2$ \( ( 1 + 28 T^{2} + p^{2} T^{4} )^{2} \)
67$C_2^2$ \( ( 1 - 125 T^{2} + p^{2} T^{4} )^{2} \)
71$C_2^2$ \( ( 1 - 117 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 - 140 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2^2$ \( ( 1 - 77 T^{2} + p^{2} T^{4} )^{2} \)
83$C_2^2$ \( ( 1 + 160 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 - 172 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 - 140 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.53466264477991861895961651012, −7.37878809346440969740632087470, −7.31940703077611429305866168551, −6.97407892081086405061520456432, −6.82057437359769679309617442531, −6.54963878103986925820443929845, −6.31729025016174349733008810109, −5.83945417483856083674901699063, −5.75036633541710867329856760684, −5.41269047548155887650837347689, −5.25054175094122962337875330546, −5.07786503218918670005608996312, −4.34351713877144888435180303206, −4.20371664487996929524821622331, −4.07067729161332318580868348105, −3.96898635548993709838742504320, −3.42283279392700061331238687174, −2.92047365219331500960942939566, −2.54275857874761757624658307465, −2.46904096054098927735191071718, −1.96734277197133247207816654441, −1.72091051330494252790410592561, −1.19474953885959037910513850180, −0.996361160485018902780394461586, −0.15868532179061038181355790295, 0.15868532179061038181355790295, 0.996361160485018902780394461586, 1.19474953885959037910513850180, 1.72091051330494252790410592561, 1.96734277197133247207816654441, 2.46904096054098927735191071718, 2.54275857874761757624658307465, 2.92047365219331500960942939566, 3.42283279392700061331238687174, 3.96898635548993709838742504320, 4.07067729161332318580868348105, 4.20371664487996929524821622331, 4.34351713877144888435180303206, 5.07786503218918670005608996312, 5.25054175094122962337875330546, 5.41269047548155887650837347689, 5.75036633541710867329856760684, 5.83945417483856083674901699063, 6.31729025016174349733008810109, 6.54963878103986925820443929845, 6.82057437359769679309617442531, 6.97407892081086405061520456432, 7.31940703077611429305866168551, 7.37878809346440969740632087470, 7.53466264477991861895961651012

Graph of the $Z$-function along the critical line