L(s) = 1 | + (−0.157 − 1.40i)2-s + (−0.290 − 1.08i)3-s + (−1.95 + 0.442i)4-s + (−1.47 + 0.578i)6-s + (2.16 − 1.51i)7-s + (0.928 + 2.67i)8-s + (1.50 − 0.871i)9-s + (2.58 + 1.49i)11-s + (1.04 + 1.98i)12-s + (−4.05 − 4.05i)13-s + (−2.47 − 2.80i)14-s + (3.60 − 1.72i)16-s + (−0.617 − 2.30i)17-s + (−1.46 − 1.98i)18-s + (−1.25 − 2.17i)19-s + ⋯ |
L(s) = 1 | + (−0.111 − 0.993i)2-s + (−0.167 − 0.625i)3-s + (−0.975 + 0.221i)4-s + (−0.602 + 0.236i)6-s + (0.819 − 0.573i)7-s + (0.328 + 0.944i)8-s + (0.503 − 0.290i)9-s + (0.779 + 0.449i)11-s + (0.301 + 0.572i)12-s + (−1.12 − 1.12i)13-s + (−0.661 − 0.750i)14-s + (0.902 − 0.431i)16-s + (−0.149 − 0.558i)17-s + (−0.344 − 0.467i)18-s + (−0.288 − 0.499i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.961 + 0.273i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.961 + 0.273i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.174152 - 1.25032i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.174152 - 1.25032i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.157 + 1.40i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (-2.16 + 1.51i)T \) |
good | 3 | \( 1 + (0.290 + 1.08i)T + (-2.59 + 1.5i)T^{2} \) |
| 11 | \( 1 + (-2.58 - 1.49i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (4.05 + 4.05i)T + 13iT^{2} \) |
| 17 | \( 1 + (0.617 + 2.30i)T + (-14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (1.25 + 2.17i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-5.79 - 1.55i)T + (19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 + 2.55iT - 29T^{2} \) |
| 31 | \( 1 + (-3.12 - 1.80i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.61 + 1.23i)T + (32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 + 7.93T + 41T^{2} \) |
| 43 | \( 1 + (7.62 - 7.62i)T - 43iT^{2} \) |
| 47 | \( 1 + (0.765 - 2.85i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-2.47 + 0.662i)T + (45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-1.04 + 1.81i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.950 - 1.64i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (3.00 - 0.805i)T + (58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + 8.09iT - 71T^{2} \) |
| 73 | \( 1 + (-9.41 + 2.52i)T + (63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-4.03 - 6.98i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-5.99 + 5.99i)T - 83iT^{2} \) |
| 89 | \( 1 + (1.77 - 1.02i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (6.63 - 6.63i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09548340597303719396496471995, −9.464885983974448971852075931277, −8.350174682247813817031081606871, −7.48419537219090819885138136719, −6.77696889001610513439815917583, −5.13162620025058669295453411247, −4.51466277516266671255832107259, −3.21861602371553736939239960317, −1.88327543983330962833643942730, −0.76723114888196137425169254843,
1.74253506588032178198049134842, 3.78974569419935376623952959772, 4.73116545066479670864137253212, 5.27444081829205892813151264583, 6.53749334341102533271697435273, 7.21952487396035753367341079991, 8.396067737757433708168156003063, 8.946681743489789279938254275585, 9.825192573419066842970435202053, 10.61154133194336964630273747061