L(s) = 1 | + (−1.41 + 0.0366i)2-s + (−0.402 − 0.107i)3-s + (1.99 − 0.103i)4-s + (0.572 + 0.137i)6-s + (−2.30 − 1.30i)7-s + (−2.81 + 0.219i)8-s + (−2.44 − 1.41i)9-s + (−0.725 + 0.418i)11-s + (−0.814 − 0.173i)12-s + (1.16 + 1.16i)13-s + (3.30 + 1.75i)14-s + (3.97 − 0.414i)16-s + (4.94 + 1.32i)17-s + (3.51 + 1.90i)18-s + (−2.91 + 5.05i)19-s + ⋯ |
L(s) = 1 | + (−0.999 + 0.0259i)2-s + (−0.232 − 0.0622i)3-s + (0.998 − 0.0518i)4-s + (0.233 + 0.0561i)6-s + (−0.870 − 0.492i)7-s + (−0.996 + 0.0777i)8-s + (−0.815 − 0.471i)9-s + (−0.218 + 0.126i)11-s + (−0.235 − 0.0500i)12-s + (0.322 + 0.322i)13-s + (0.882 + 0.469i)14-s + (0.994 − 0.103i)16-s + (1.20 + 0.321i)17-s + (0.827 + 0.449i)18-s + (−0.669 + 1.15i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.361 - 0.932i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.361 - 0.932i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.460284 + 0.315192i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.460284 + 0.315192i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.41 - 0.0366i)T \) |
| 5 | \( 1 \) |
| 7 | \( 1 + (2.30 + 1.30i)T \) |
good | 3 | \( 1 + (0.402 + 0.107i)T + (2.59 + 1.5i)T^{2} \) |
| 11 | \( 1 + (0.725 - 0.418i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-1.16 - 1.16i)T + 13iT^{2} \) |
| 17 | \( 1 + (-4.94 - 1.32i)T + (14.7 + 8.5i)T^{2} \) |
| 19 | \( 1 + (2.91 - 5.05i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.896 - 3.34i)T + (-19.9 + 11.5i)T^{2} \) |
| 29 | \( 1 - 5.00iT - 29T^{2} \) |
| 31 | \( 1 + (-7.03 + 4.06i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.190 - 0.711i)T + (-32.0 + 18.5i)T^{2} \) |
| 41 | \( 1 - 0.0958T + 41T^{2} \) |
| 43 | \( 1 + (-4.87 + 4.87i)T - 43iT^{2} \) |
| 47 | \( 1 + (5.28 - 1.41i)T + (40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (3.43 - 12.8i)T + (-45.8 - 26.5i)T^{2} \) |
| 59 | \( 1 + (-4.46 - 7.74i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.919 + 1.59i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.138 + 0.515i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 - 13.6iT - 71T^{2} \) |
| 73 | \( 1 + (1.55 - 5.78i)T + (-63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-5.30 + 9.19i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (4.36 - 4.36i)T - 83iT^{2} \) |
| 89 | \( 1 + (2.50 + 1.44i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (4.24 - 4.24i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39312241948721132014494261277, −9.830245966262264707261128081251, −8.934514388370565717086001962950, −8.091213199843141276749561062450, −7.20839783674057730114476214868, −6.23770672994799616822920432111, −5.69157150061691442898086495354, −3.81529022387225281998270177085, −2.85743950348618944168848959120, −1.16852920541385247002268016859,
0.46831196184671230553128035661, 2.46388799109032684786511321573, 3.21578006964517828360678387343, 5.06764357718000528294941293574, 6.07150300700641316595875161479, 6.71072577923359149587425064992, 7.974990754852298118627995779747, 8.530634016195537434590741630371, 9.467216946636177522903143037091, 10.19662788385055523322934115226