L(s) = 1 | + (1 + i)2-s + (3.89 − 3.89i)3-s + 2i·4-s + (−2.75 + 4.17i)5-s + 7.79·6-s + (−1.87 − 1.87i)7-s + (−2 + 2i)8-s − 21.3i·9-s + (−6.92 + 1.41i)10-s + 6.78·11-s + (7.79 + 7.79i)12-s + (−15.7 + 15.7i)13-s − 3.74i·14-s + (5.51 + 27.0i)15-s − 4·16-s + (−5.59 − 5.59i)17-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + (1.29 − 1.29i)3-s + 0.5i·4-s + (−0.551 + 0.834i)5-s + 1.29·6-s + (−0.267 − 0.267i)7-s + (−0.250 + 0.250i)8-s − 2.37i·9-s + (−0.692 + 0.141i)10-s + 0.617·11-s + (0.649 + 0.649i)12-s + (−1.21 + 1.21i)13-s − 0.267i·14-s + (0.367 + 1.80i)15-s − 0.250·16-s + (−0.328 − 0.328i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0303i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.999 + 0.0303i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.95451 - 0.0297059i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.95451 - 0.0297059i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 5 | \( 1 + (2.75 - 4.17i)T \) |
| 7 | \( 1 + (1.87 + 1.87i)T \) |
good | 3 | \( 1 + (-3.89 + 3.89i)T - 9iT^{2} \) |
| 11 | \( 1 - 6.78T + 121T^{2} \) |
| 13 | \( 1 + (15.7 - 15.7i)T - 169iT^{2} \) |
| 17 | \( 1 + (5.59 + 5.59i)T + 289iT^{2} \) |
| 19 | \( 1 - 11.3iT - 361T^{2} \) |
| 23 | \( 1 + (-11.1 + 11.1i)T - 529iT^{2} \) |
| 29 | \( 1 - 5.54iT - 841T^{2} \) |
| 31 | \( 1 - 5.36T + 961T^{2} \) |
| 37 | \( 1 + (-6.62 - 6.62i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 56.7T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-0.984 + 0.984i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (50.7 + 50.7i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-53.9 + 53.9i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 7.29iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 24.2T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-51.1 - 51.1i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 42.7T + 5.04e3T^{2} \) |
| 73 | \( 1 + (37.8 - 37.8i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 44.8iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-38.9 + 38.9i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 81.9iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (60.8 + 60.8i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.49273959047398733109074702637, −13.65645500968508254058095994996, −12.49972919828197774498787155928, −11.64416389449839921773924502008, −9.532199953320422934448456514093, −8.260148376435622303679105832053, −7.09263243525793023531138962012, −6.70683305320137999369967626726, −3.93113990083557607799613933068, −2.49997727023490992913163469447,
2.83056806224277567147719747212, 4.12833286679855375664893655685, 5.17058083422883427719907717585, 7.81629164312886624863913016242, 9.041959600229843057880082690707, 9.743958094538831414439900561577, 11.01105449707960471114181664207, 12.44973367141172288768773451785, 13.40911137915999832954926109777, 14.69213048062162587215684215228