L(s) = 1 | + (1 + i)2-s + (−2.48 + 2.48i)3-s + 2i·4-s + (−4.90 + 0.953i)5-s − 4.96·6-s + (1.87 + 1.87i)7-s + (−2 + 2i)8-s − 3.32i·9-s + (−5.86 − 3.95i)10-s + 14.2·11-s + (−4.96 − 4.96i)12-s + (−6.32 + 6.32i)13-s + 3.74i·14-s + (9.81 − 14.5i)15-s − 4·16-s + (23.2 + 23.2i)17-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + (−0.827 + 0.827i)3-s + 0.5i·4-s + (−0.981 + 0.190i)5-s − 0.827·6-s + (0.267 + 0.267i)7-s + (−0.250 + 0.250i)8-s − 0.369i·9-s + (−0.586 − 0.395i)10-s + 1.29·11-s + (−0.413 − 0.413i)12-s + (−0.486 + 0.486i)13-s + 0.267i·14-s + (0.654 − 0.970i)15-s − 0.250·16-s + (1.36 + 1.36i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.678 - 0.734i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 70 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.678 - 0.734i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.421234 + 0.962156i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.421234 + 0.962156i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1 - i)T \) |
| 5 | \( 1 + (4.90 - 0.953i)T \) |
| 7 | \( 1 + (-1.87 - 1.87i)T \) |
good | 3 | \( 1 + (2.48 - 2.48i)T - 9iT^{2} \) |
| 11 | \( 1 - 14.2T + 121T^{2} \) |
| 13 | \( 1 + (6.32 - 6.32i)T - 169iT^{2} \) |
| 17 | \( 1 + (-23.2 - 23.2i)T + 289iT^{2} \) |
| 19 | \( 1 + 26.8iT - 361T^{2} \) |
| 23 | \( 1 + (6.00 - 6.00i)T - 529iT^{2} \) |
| 29 | \( 1 - 4.17iT - 841T^{2} \) |
| 31 | \( 1 - 7.54T + 961T^{2} \) |
| 37 | \( 1 + (9.17 + 9.17i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 26.3T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-27.7 + 27.7i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (-38.8 - 38.8i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (50.2 - 50.2i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 17.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 3.10T + 3.72e3T^{2} \) |
| 67 | \( 1 + (36.8 + 36.8i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 127.T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-65.5 + 65.5i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 55.8iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-89.9 + 89.9i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + 92.3iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (7.00 + 7.00i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.04337236663730360028748260025, −14.14168820134105313937338315738, −12.33800599195679629594943157964, −11.67837938984228851479055081748, −10.66843789062643195186724386161, −9.107725466386170352032753170411, −7.65264760700229210055387055631, −6.26697193507679332053001248307, −4.85000530926039546642826186812, −3.79961641359911836636452793711,
0.981115213727887376065048548522, 3.70407383795107388508117954515, 5.30469084806088616026557205858, 6.75940537731982721545060996356, 7.908006652376378201054535864105, 9.746615225134552501541728602074, 11.24147148577368522484961993408, 12.11563776759126347658679624225, 12.36604354096904021049928648561, 13.99578772543077723983752038347