Properties

Label 2-7-7.6-c86-0-25
Degree $2$
Conductor $7$
Sign $1$
Analytic cond. $327.864$
Root an. cond. $18.1070$
Motivic weight $86$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.65e13·2-s + 1.98e26·4-s − 2.18e36·7-s − 2.00e39·8-s + 1.07e41·9-s − 7.65e44·11-s + 3.62e49·14-s + 1.79e52·16-s − 1.78e54·18-s + 1.27e58·22-s + 7.16e58·23-s + 1.29e60·25-s − 4.32e62·28-s + 1.43e63·29-s − 1.42e65·32-s + 2.13e67·36-s − 5.04e67·37-s − 1.38e70·43-s − 1.51e71·44-s − 1.18e72·46-s + 4.76e72·49-s − 2.14e73·50-s + 1.80e74·53-s + 4.37e75·56-s − 2.37e76·58-s − 2.35e77·63-s + 9.74e77·64-s + ⋯
L(s)  = 1  − 1.88·2-s + 2.55·4-s − 7-s − 2.94·8-s + 9-s − 1.27·11-s + 1.88·14-s + 2.99·16-s − 1.88·18-s + 2.39·22-s + 1.99·23-s + 25-s − 2.55·28-s + 1.87·29-s − 2.70·32-s + 2.55·36-s − 1.86·37-s − 0.800·43-s − 3.25·44-s − 3.77·46-s + 49-s − 1.88·50-s + 1.29·53-s + 2.94·56-s − 3.53·58-s − 63-s + 2.10·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(87-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s+43) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7\)
Sign: $1$
Analytic conductor: \(327.864\)
Root analytic conductor: \(18.1070\)
Motivic weight: \(86\)
Rational: yes
Arithmetic: yes
Character: $\chi_{7} (6, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7,\ (\ :43),\ 1)\)

Particular Values

\(L(\frac{87}{2})\) \(\approx\) \(0.7835380972\)
\(L(\frac12)\) \(\approx\) \(0.7835380972\)
\(L(44)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + p^{43} T \)
good2 \( 1 + 16594750398327 T + p^{86} T^{2} \)
3 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
5 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
11 \( 1 + \)\(76\!\cdots\!66\)\( T + p^{86} T^{2} \)
13 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
17 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
19 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
23 \( 1 - \)\(71\!\cdots\!82\)\( T + p^{86} T^{2} \)
29 \( 1 - \)\(14\!\cdots\!86\)\( T + p^{86} T^{2} \)
31 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
37 \( 1 + \)\(50\!\cdots\!22\)\( T + p^{86} T^{2} \)
41 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
43 \( 1 + \)\(13\!\cdots\!38\)\( T + p^{86} T^{2} \)
47 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
53 \( 1 - \)\(18\!\cdots\!46\)\( T + p^{86} T^{2} \)
59 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
61 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
67 \( 1 - \)\(47\!\cdots\!18\)\( T + p^{86} T^{2} \)
71 \( 1 + \)\(55\!\cdots\!06\)\( T + p^{86} T^{2} \)
73 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
79 \( 1 - \)\(60\!\cdots\!66\)\( T + p^{86} T^{2} \)
83 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
89 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
97 \( ( 1 - p^{43} T )( 1 + p^{43} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.27602298992906922017693793195, −9.203946837124601974708446225352, −8.321627697873489358079136048556, −7.08972856391424933368331530501, −6.70675605777696241884603003469, −5.11380176004971424634845215866, −3.20513351175073744203462288969, −2.47170347493852041227206331915, −1.21927386554905420586945832952, −0.50941444237654721225119794864, 0.50941444237654721225119794864, 1.21927386554905420586945832952, 2.47170347493852041227206331915, 3.20513351175073744203462288969, 5.11380176004971424634845215866, 6.70675605777696241884603003469, 7.08972856391424933368331530501, 8.321627697873489358079136048556, 9.203946837124601974708446225352, 10.27602298992906922017693793195

Graph of the $Z$-function along the critical line