Properties

Label 2-7-7.5-c18-0-10
Degree $2$
Conductor $7$
Sign $-0.0957 - 0.995i$
Analytic cond. $14.3770$
Root an. cond. $3.79170$
Motivic weight $18$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (447. − 775. i)2-s + (−7.85e3 + 4.53e3i)3-s + (−2.69e5 − 4.66e5i)4-s + (−2.15e6 − 1.24e6i)5-s + 8.12e6i·6-s + (3.85e7 + 1.19e7i)7-s − 2.47e8·8-s + (−1.52e8 + 2.64e8i)9-s + (−1.92e9 + 1.11e9i)10-s + (−1.02e9 − 1.77e9i)11-s + (4.23e9 + 2.44e9i)12-s + 1.33e10i·13-s + (2.65e10 − 2.45e10i)14-s + 2.25e10·15-s + (−4.01e10 + 6.95e10i)16-s + (−6.78e10 + 3.91e10i)17-s + ⋯
L(s)  = 1  + (0.873 − 1.51i)2-s + (−0.399 + 0.230i)3-s + (−1.02 − 1.77i)4-s + (−1.10 − 0.636i)5-s + 0.805i·6-s + (0.955 + 0.296i)7-s − 1.84·8-s + (−0.393 + 0.681i)9-s + (−1.92 + 1.11i)10-s + (−0.434 − 0.752i)11-s + (0.820 + 0.473i)12-s + 1.26i·13-s + (1.28 − 1.18i)14-s + 0.587·15-s + (−0.584 + 1.01i)16-s + (−0.572 + 0.330i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0957 - 0.995i)\, \overline{\Lambda}(19-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s+9) \, L(s)\cr =\mathstrut & (-0.0957 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7\)
Sign: $-0.0957 - 0.995i$
Analytic conductor: \(14.3770\)
Root analytic conductor: \(3.79170\)
Motivic weight: \(18\)
Rational: no
Arithmetic: yes
Character: $\chi_{7} (5, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7,\ (\ :9),\ -0.0957 - 0.995i)\)

Particular Values

\(L(\frac{19}{2})\) \(\approx\) \(0.379609 + 0.417860i\)
\(L(\frac12)\) \(\approx\) \(0.379609 + 0.417860i\)
\(L(10)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-3.85e7 - 1.19e7i)T \)
good2 \( 1 + (-447. + 775. i)T + (-1.31e5 - 2.27e5i)T^{2} \)
3 \( 1 + (7.85e3 - 4.53e3i)T + (1.93e8 - 3.35e8i)T^{2} \)
5 \( 1 + (2.15e6 + 1.24e6i)T + (1.90e12 + 3.30e12i)T^{2} \)
11 \( 1 + (1.02e9 + 1.77e9i)T + (-2.77e18 + 4.81e18i)T^{2} \)
13 \( 1 - 1.33e10iT - 1.12e20T^{2} \)
17 \( 1 + (6.78e10 - 3.91e10i)T + (7.03e21 - 1.21e22i)T^{2} \)
19 \( 1 + (2.45e11 + 1.41e11i)T + (5.20e22 + 9.01e22i)T^{2} \)
23 \( 1 + (-9.69e11 + 1.67e12i)T + (-1.62e24 - 2.80e24i)T^{2} \)
29 \( 1 + 2.51e13T + 2.10e26T^{2} \)
31 \( 1 + (1.72e13 - 9.93e12i)T + (3.49e26 - 6.05e26i)T^{2} \)
37 \( 1 + (-6.86e13 + 1.18e14i)T + (-8.44e27 - 1.46e28i)T^{2} \)
41 \( 1 - 1.61e14iT - 1.07e29T^{2} \)
43 \( 1 + 7.27e14T + 2.52e29T^{2} \)
47 \( 1 + (5.15e14 + 2.97e14i)T + (6.26e29 + 1.08e30i)T^{2} \)
53 \( 1 + (1.00e15 + 1.73e15i)T + (-5.44e30 + 9.42e30i)T^{2} \)
59 \( 1 + (-9.23e15 + 5.33e15i)T + (3.75e31 - 6.49e31i)T^{2} \)
61 \( 1 + (-1.91e16 - 1.10e16i)T + (6.83e31 + 1.18e32i)T^{2} \)
67 \( 1 + (7.08e15 + 1.22e16i)T + (-3.70e32 + 6.41e32i)T^{2} \)
71 \( 1 - 5.99e16T + 2.10e33T^{2} \)
73 \( 1 + (1.65e16 - 9.54e15i)T + (1.73e33 - 3.00e33i)T^{2} \)
79 \( 1 + (1.39e16 - 2.41e16i)T + (-7.18e33 - 1.24e34i)T^{2} \)
83 \( 1 + 2.09e17iT - 3.49e34T^{2} \)
89 \( 1 + (3.04e17 + 1.75e17i)T + (6.13e34 + 1.06e35i)T^{2} \)
97 \( 1 + 1.12e15iT - 5.77e35T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.50615236623587244535893372945, −14.64296529906475047819814979057, −13.03576873005711059686166904852, −11.50193089863398189686613551279, −11.05334700809730519960237528538, −8.579163568811918431820424739029, −5.12216081778155795282358399165, −4.12120640885687507153957523990, −2.05454267007584233446790199767, −0.17823497149420602430401952195, 3.72506072550929149047287492280, 5.32367782807799343627388631498, 7.06306672236915329789575395830, 8.022611522713933706058408134022, 11.33830156402688825281747785748, 12.94237688047547062542421696049, 14.88300765460684930225681555819, 15.24653924198520649120417671707, 17.11191870452160999165256125922, 18.14380239202856196558735881035

Graph of the $Z$-function along the critical line