Properties

Label 2-7-7.5-c18-0-3
Degree $2$
Conductor $7$
Sign $0.0573 - 0.998i$
Analytic cond. $14.3770$
Root an. cond. $3.79170$
Motivic weight $18$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−466. + 808. i)2-s + (−2.56e4 + 1.47e4i)3-s + (−3.04e5 − 5.28e5i)4-s + (1.26e6 + 7.29e5i)5-s − 2.76e7i·6-s + (3.62e7 + 1.77e7i)7-s + 3.24e8·8-s + (2.44e8 − 4.23e8i)9-s + (−1.18e9 + 6.81e8i)10-s + (−1.86e9 − 3.23e9i)11-s + (1.56e10 + 9.02e9i)12-s − 7.49e9i·13-s + (−3.12e10 + 2.10e10i)14-s − 4.31e10·15-s + (−7.17e10 + 1.24e11i)16-s + (4.27e10 − 2.46e10i)17-s + ⋯
L(s)  = 1  + (−0.911 + 1.57i)2-s + (−1.30 + 0.751i)3-s + (−1.16 − 2.01i)4-s + (0.647 + 0.373i)5-s − 2.74i·6-s + (0.898 + 0.438i)7-s + 2.42·8-s + (0.630 − 1.09i)9-s + (−1.18 + 0.681i)10-s + (−0.792 − 1.37i)11-s + (3.03 + 1.74i)12-s − 0.707i·13-s + (−1.51 + 1.01i)14-s − 1.12·15-s + (−1.04 + 1.80i)16-s + (0.360 − 0.208i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0573 - 0.998i)\, \overline{\Lambda}(19-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7 ^{s/2} \, \Gamma_{\C}(s+9) \, L(s)\cr =\mathstrut & (0.0573 - 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7\)
Sign: $0.0573 - 0.998i$
Analytic conductor: \(14.3770\)
Root analytic conductor: \(3.79170\)
Motivic weight: \(18\)
Rational: no
Arithmetic: yes
Character: $\chi_{7} (5, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 7,\ (\ :9),\ 0.0573 - 0.998i)\)

Particular Values

\(L(\frac{19}{2})\) \(\approx\) \(0.487162 + 0.459967i\)
\(L(\frac12)\) \(\approx\) \(0.487162 + 0.459967i\)
\(L(10)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + (-3.62e7 - 1.77e7i)T \)
good2 \( 1 + (466. - 808. i)T + (-1.31e5 - 2.27e5i)T^{2} \)
3 \( 1 + (2.56e4 - 1.47e4i)T + (1.93e8 - 3.35e8i)T^{2} \)
5 \( 1 + (-1.26e6 - 7.29e5i)T + (1.90e12 + 3.30e12i)T^{2} \)
11 \( 1 + (1.86e9 + 3.23e9i)T + (-2.77e18 + 4.81e18i)T^{2} \)
13 \( 1 + 7.49e9iT - 1.12e20T^{2} \)
17 \( 1 + (-4.27e10 + 2.46e10i)T + (7.03e21 - 1.21e22i)T^{2} \)
19 \( 1 + (-3.85e11 - 2.22e11i)T + (5.20e22 + 9.01e22i)T^{2} \)
23 \( 1 + (1.81e11 - 3.14e11i)T + (-1.62e24 - 2.80e24i)T^{2} \)
29 \( 1 + 1.15e13T + 2.10e26T^{2} \)
31 \( 1 + (-7.81e12 + 4.50e12i)T + (3.49e26 - 6.05e26i)T^{2} \)
37 \( 1 + (-9.55e13 + 1.65e14i)T + (-8.44e27 - 1.46e28i)T^{2} \)
41 \( 1 - 1.01e14iT - 1.07e29T^{2} \)
43 \( 1 - 4.04e14T + 2.52e29T^{2} \)
47 \( 1 + (9.33e14 + 5.39e14i)T + (6.26e29 + 1.08e30i)T^{2} \)
53 \( 1 + (4.09e14 + 7.08e14i)T + (-5.44e30 + 9.42e30i)T^{2} \)
59 \( 1 + (-4.96e15 + 2.86e15i)T + (3.75e31 - 6.49e31i)T^{2} \)
61 \( 1 + (8.76e15 + 5.06e15i)T + (6.83e31 + 1.18e32i)T^{2} \)
67 \( 1 + (-1.87e16 - 3.24e16i)T + (-3.70e32 + 6.41e32i)T^{2} \)
71 \( 1 - 4.25e16T + 2.10e33T^{2} \)
73 \( 1 + (-5.60e16 + 3.23e16i)T + (1.73e33 - 3.00e33i)T^{2} \)
79 \( 1 + (3.89e16 - 6.74e16i)T + (-7.18e33 - 1.24e34i)T^{2} \)
83 \( 1 - 1.31e17iT - 3.49e34T^{2} \)
89 \( 1 + (1.05e17 + 6.09e16i)T + (6.13e34 + 1.06e35i)T^{2} \)
97 \( 1 + 1.20e18iT - 5.77e35T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−17.80204190404516460509269317019, −16.57652758717008465816459491175, −15.66753146931953655748877934380, −14.17550086437819399871779344441, −11.06360181175916888991470562904, −9.830057592618625785199003625440, −7.975825916300218497681626581564, −5.83598930164509170521876994698, −5.39155815276248246027375159100, −0.59611179135781350701441263225, 1.00274081222844277889518209454, 1.93349913441184503759841450942, 4.88525412156540508252722244937, 7.53769468779295973423509156438, 9.702489851839038972398296712603, 11.07917523522622204469317822093, 12.11913941910602064654180008353, 13.29288873373283260302905160090, 16.99422975990923283313970075474, 17.72686855087598274673633139794

Graph of the $Z$-function along the critical line