| L(s) = 1 | + (1.17 + 2.03i)2-s + (−1.76 + 3.06i)4-s + (−2.05 − 3.56i)5-s + (2.51 − 0.818i)7-s − 3.60·8-s + (4.84 − 8.38i)10-s + (0.5 − 0.866i)11-s + 5.39·13-s + (4.62 + 4.16i)14-s + (−0.709 − 1.22i)16-s + (1.17 − 2.03i)17-s + (−2.87 − 4.97i)19-s + 14.5·20-s + 2.35·22-s + (0.709 + 1.22i)23-s + ⋯ |
| L(s) = 1 | + (0.831 + 1.44i)2-s + (−0.883 + 1.53i)4-s + (−0.920 − 1.59i)5-s + (0.950 − 0.309i)7-s − 1.27·8-s + (1.53 − 2.65i)10-s + (0.150 − 0.261i)11-s + 1.49·13-s + (1.23 + 1.11i)14-s + (−0.177 − 0.307i)16-s + (0.285 − 0.494i)17-s + (−0.659 − 1.14i)19-s + 3.25·20-s + 0.501·22-s + (0.147 + 0.256i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.714 - 0.699i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 693 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.714 - 0.699i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(2.04334 + 0.833825i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.04334 + 0.833825i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 7 | \( 1 + (-2.51 + 0.818i)T \) |
| 11 | \( 1 + (-0.5 + 0.866i)T \) |
| good | 2 | \( 1 + (-1.17 - 2.03i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (2.05 + 3.56i)T + (-2.5 + 4.33i)T^{2} \) |
| 13 | \( 1 - 5.39T + 13T^{2} \) |
| 17 | \( 1 + (-1.17 + 2.03i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.87 + 4.97i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.709 - 1.22i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 5.13T + 29T^{2} \) |
| 31 | \( 1 + (-0.266 + 0.461i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (1.20 + 2.08i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 5.68T + 41T^{2} \) |
| 43 | \( 1 - 3.42T + 43T^{2} \) |
| 47 | \( 1 + (-4.47 - 7.74i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.80 + 3.12i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.709 + 1.22i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.88 + 3.25i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.01 - 1.75i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 4.10T + 71T^{2} \) |
| 73 | \( 1 + (3.23 - 5.60i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.09 + 8.82i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 16.0T + 83T^{2} \) |
| 89 | \( 1 + (4.36 + 7.56i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 17.7T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83828350658022471531108631422, −9.022565330798251160962046742532, −8.534573978467274623047032352379, −7.947610774000654510263632812256, −7.09589294175325330684298271320, −5.95723741900775980410055617407, −5.01449760995139523208209285953, −4.47838814065459067695367429844, −3.67667332530252493710923534293, −1.07470225652318955890028867875,
1.58433340439621669089557031455, 2.76001976832178306171493710168, 3.72413205719258396810168783212, 4.27180071620012993746122109813, 5.67876837533392274400931028504, 6.64083790264329158287213474591, 7.86016431622353679871204958093, 8.623605519789850417720091093123, 10.23716218363772511721415284905, 10.60265694207657116737653064634