Properties

Label 2-686-49.16-c1-0-0
Degree $2$
Conductor $686$
Sign $-0.730 + 0.682i$
Analytic cond. $5.47773$
Root an. cond. $2.34045$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.365 − 0.930i)2-s + (0.179 + 2.39i)3-s + (−0.733 + 0.680i)4-s + (−3.27 + 2.23i)5-s + (2.16 − 1.04i)6-s + (0.900 + 0.433i)8-s + (−2.73 + 0.411i)9-s + (3.27 + 2.23i)10-s + (−3.91 − 0.590i)11-s + (−1.75 − 1.63i)12-s + (−1.13 + 1.42i)13-s + (−5.92 − 7.43i)15-s + (0.0747 − 0.997i)16-s + (1.24 − 0.382i)17-s + (1.38 + 2.39i)18-s + (1.57 − 2.73i)19-s + ⋯
L(s)  = 1  + (−0.258 − 0.658i)2-s + (0.103 + 1.38i)3-s + (−0.366 + 0.340i)4-s + (−1.46 + 0.997i)5-s + (0.882 − 0.425i)6-s + (0.318 + 0.153i)8-s + (−0.910 + 0.137i)9-s + (1.03 + 0.705i)10-s + (−1.18 − 0.177i)11-s + (−0.507 − 0.471i)12-s + (−0.314 + 0.394i)13-s + (−1.52 − 1.91i)15-s + (0.0186 − 0.249i)16-s + (0.300 − 0.0928i)17-s + (0.325 + 0.563i)18-s + (0.361 − 0.626i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 686 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.730 + 0.682i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 686 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.730 + 0.682i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(686\)    =    \(2 \cdot 7^{3}\)
Sign: $-0.730 + 0.682i$
Analytic conductor: \(5.47773\)
Root analytic conductor: \(2.34045\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{686} (569, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 686,\ (\ :1/2),\ -0.730 + 0.682i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0524690 - 0.133077i\)
\(L(\frac12)\) \(\approx\) \(0.0524690 - 0.133077i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.365 + 0.930i)T \)
7 \( 1 \)
good3 \( 1 + (-0.179 - 2.39i)T + (-2.96 + 0.447i)T^{2} \)
5 \( 1 + (3.27 - 2.23i)T + (1.82 - 4.65i)T^{2} \)
11 \( 1 + (3.91 + 0.590i)T + (10.5 + 3.24i)T^{2} \)
13 \( 1 + (1.13 - 1.42i)T + (-2.89 - 12.6i)T^{2} \)
17 \( 1 + (-1.24 + 0.382i)T + (14.0 - 9.57i)T^{2} \)
19 \( 1 + (-1.57 + 2.73i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-1.96 - 0.606i)T + (19.0 + 12.9i)T^{2} \)
29 \( 1 + (-1.60 + 7.04i)T + (-26.1 - 12.5i)T^{2} \)
31 \( 1 + (-1.97 - 3.41i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + (-1.08 - 1.00i)T + (2.76 + 36.8i)T^{2} \)
41 \( 1 + (8.00 + 3.85i)T + (25.5 + 32.0i)T^{2} \)
43 \( 1 + (5.80 - 2.79i)T + (26.8 - 33.6i)T^{2} \)
47 \( 1 + (2.39 + 6.10i)T + (-34.4 + 31.9i)T^{2} \)
53 \( 1 + (7.48 - 6.94i)T + (3.96 - 52.8i)T^{2} \)
59 \( 1 + (11.1 + 7.60i)T + (21.5 + 54.9i)T^{2} \)
61 \( 1 + (-4.15 - 3.85i)T + (4.55 + 60.8i)T^{2} \)
67 \( 1 + (-0.482 - 0.835i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-1.18 - 5.21i)T + (-63.9 + 30.8i)T^{2} \)
73 \( 1 + (1.49 - 3.80i)T + (-53.5 - 49.6i)T^{2} \)
79 \( 1 + (-6.03 + 10.4i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-0.791 - 0.992i)T + (-18.4 + 80.9i)T^{2} \)
89 \( 1 + (12.7 - 1.92i)T + (85.0 - 26.2i)T^{2} \)
97 \( 1 + 14.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.89915034623531667486300016808, −10.28172483447960734722082230084, −9.606112745102418126685803270196, −8.482247412473001862496900195329, −7.78591861225528515104036674609, −6.82908363446362721542163002068, −5.11292350233920677668913841246, −4.36405303054724801395490185381, −3.38818479036076448020758159469, −2.79121712236017766889379899510, 0.086584316649192647770582541413, 1.37402153425356712302305545835, 3.17271651007355432459198819633, 4.65493121762786748165819834110, 5.43057101318567201028280344488, 6.73770395022669659872864453802, 7.55316813140120166079922868887, 8.039186557300159949172610546338, 8.481604202381671970552983579447, 9.740593030932481764340060550829

Graph of the $Z$-function along the critical line