Properties

Label 2-6845-1.1-c1-0-278
Degree $2$
Conductor $6845$
Sign $-1$
Analytic cond. $54.6576$
Root an. cond. $7.39307$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.59·2-s − 1.55·3-s + 0.528·4-s − 5-s − 2.47·6-s − 1.60·7-s − 2.33·8-s − 0.570·9-s − 1.59·10-s + 1.84·11-s − 0.823·12-s + 1.04·13-s − 2.54·14-s + 1.55·15-s − 4.77·16-s + 2.68·17-s − 0.907·18-s + 5.62·19-s − 0.528·20-s + 2.49·21-s + 2.93·22-s − 0.721·23-s + 3.64·24-s + 25-s + 1.65·26-s + 5.56·27-s − 0.846·28-s + ⋯
L(s)  = 1  + 1.12·2-s − 0.899·3-s + 0.264·4-s − 0.447·5-s − 1.01·6-s − 0.605·7-s − 0.827·8-s − 0.190·9-s − 0.502·10-s + 0.555·11-s − 0.237·12-s + 0.289·13-s − 0.680·14-s + 0.402·15-s − 1.19·16-s + 0.652·17-s − 0.213·18-s + 1.29·19-s − 0.118·20-s + 0.544·21-s + 0.624·22-s − 0.150·23-s + 0.744·24-s + 0.200·25-s + 0.325·26-s + 1.07·27-s − 0.160·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6845\)    =    \(5 \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(54.6576\)
Root analytic conductor: \(7.39307\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6845,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
37 \( 1 \)
good2 \( 1 - 1.59T + 2T^{2} \)
3 \( 1 + 1.55T + 3T^{2} \)
7 \( 1 + 1.60T + 7T^{2} \)
11 \( 1 - 1.84T + 11T^{2} \)
13 \( 1 - 1.04T + 13T^{2} \)
17 \( 1 - 2.68T + 17T^{2} \)
19 \( 1 - 5.62T + 19T^{2} \)
23 \( 1 + 0.721T + 23T^{2} \)
29 \( 1 + 6.48T + 29T^{2} \)
31 \( 1 - 5.95T + 31T^{2} \)
41 \( 1 + 8.18T + 41T^{2} \)
43 \( 1 - 8.15T + 43T^{2} \)
47 \( 1 + 1.59T + 47T^{2} \)
53 \( 1 - 2.75T + 53T^{2} \)
59 \( 1 + 0.907T + 59T^{2} \)
61 \( 1 + 1.32T + 61T^{2} \)
67 \( 1 - 3.08T + 67T^{2} \)
71 \( 1 - 10.3T + 71T^{2} \)
73 \( 1 + 11.9T + 73T^{2} \)
79 \( 1 - 2.60T + 79T^{2} \)
83 \( 1 - 2.06T + 83T^{2} \)
89 \( 1 - 3.87T + 89T^{2} \)
97 \( 1 + 2.70T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.37342197113652002162913845875, −6.54733932664193599584220159334, −6.09510141615696291017815874413, −5.39078993307310357701513210395, −4.93371050175323177841753347509, −3.95210013147323619556854448634, −3.44200191648198958649445079130, −2.70662839328890433539137206657, −1.11663835895365173972008984924, 0, 1.11663835895365173972008984924, 2.70662839328890433539137206657, 3.44200191648198958649445079130, 3.95210013147323619556854448634, 4.93371050175323177841753347509, 5.39078993307310357701513210395, 6.09510141615696291017815874413, 6.54733932664193599584220159334, 7.37342197113652002162913845875

Graph of the $Z$-function along the critical line