Properties

Label 2-6845-1.1-c1-0-347
Degree $2$
Conductor $6845$
Sign $-1$
Analytic cond. $54.6576$
Root an. cond. $7.39307$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.310·2-s + 2.06·3-s − 1.90·4-s − 5-s + 0.639·6-s − 2.12·7-s − 1.21·8-s + 1.25·9-s − 0.310·10-s + 5.48·11-s − 3.92·12-s + 1.65·13-s − 0.657·14-s − 2.06·15-s + 3.43·16-s − 2.84·17-s + 0.388·18-s − 2.39·19-s + 1.90·20-s − 4.37·21-s + 1.70·22-s + 1.29·23-s − 2.49·24-s + 25-s + 0.512·26-s − 3.60·27-s + 4.03·28-s + ⋯
L(s)  = 1  + 0.219·2-s + 1.19·3-s − 0.951·4-s − 0.447·5-s + 0.261·6-s − 0.801·7-s − 0.428·8-s + 0.417·9-s − 0.0981·10-s + 1.65·11-s − 1.13·12-s + 0.458·13-s − 0.175·14-s − 0.532·15-s + 0.857·16-s − 0.689·17-s + 0.0915·18-s − 0.548·19-s + 0.425·20-s − 0.954·21-s + 0.362·22-s + 0.269·23-s − 0.509·24-s + 0.200·25-s + 0.100·26-s − 0.693·27-s + 0.762·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6845 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6845 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6845\)    =    \(5 \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(54.6576\)
Root analytic conductor: \(7.39307\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6845,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + T \)
37 \( 1 \)
good2 \( 1 - 0.310T + 2T^{2} \)
3 \( 1 - 2.06T + 3T^{2} \)
7 \( 1 + 2.12T + 7T^{2} \)
11 \( 1 - 5.48T + 11T^{2} \)
13 \( 1 - 1.65T + 13T^{2} \)
17 \( 1 + 2.84T + 17T^{2} \)
19 \( 1 + 2.39T + 19T^{2} \)
23 \( 1 - 1.29T + 23T^{2} \)
29 \( 1 + 0.459T + 29T^{2} \)
31 \( 1 + 7.00T + 31T^{2} \)
41 \( 1 - 7.27T + 41T^{2} \)
43 \( 1 + 4.39T + 43T^{2} \)
47 \( 1 + 0.310T + 47T^{2} \)
53 \( 1 + 12.0T + 53T^{2} \)
59 \( 1 - 8.29T + 59T^{2} \)
61 \( 1 - 10.2T + 61T^{2} \)
67 \( 1 - 1.32T + 67T^{2} \)
71 \( 1 - 0.587T + 71T^{2} \)
73 \( 1 - 10.8T + 73T^{2} \)
79 \( 1 + 2.83T + 79T^{2} \)
83 \( 1 - 11.8T + 83T^{2} \)
89 \( 1 + 16.8T + 89T^{2} \)
97 \( 1 + 18.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84881620098406716573911615243, −6.84861205243941346722539911081, −6.36946323689676939830165497350, −5.43865624605242473729445311928, −4.39601420473812279571920550107, −3.74321630612391783949478340481, −3.53539040334913199755731687566, −2.50403168674367879050124198342, −1.33845958686523469217430732513, 0, 1.33845958686523469217430732513, 2.50403168674367879050124198342, 3.53539040334913199755731687566, 3.74321630612391783949478340481, 4.39601420473812279571920550107, 5.43865624605242473729445311928, 6.36946323689676939830165497350, 6.84861205243941346722539911081, 7.84881620098406716573911615243

Graph of the $Z$-function along the critical line