Properties

Label 2-6840-1.1-c1-0-62
Degree $2$
Conductor $6840$
Sign $-1$
Analytic cond. $54.6176$
Root an. cond. $7.39037$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 3.90·7-s − 0.468·11-s + 1.90·13-s + 1.10·17-s + 19-s − 2.17·23-s + 25-s + 0.796·29-s + 7.24·31-s − 3.90·35-s − 6.23·37-s − 8.40·41-s − 7.18·43-s + 2.17·47-s + 8.24·49-s + 13.5·53-s − 0.468·55-s − 11.9·59-s + 0.780·61-s + 1.90·65-s + 13.2·67-s − 14.3·71-s − 2.95·73-s + 1.82·77-s − 14.6·79-s + 11.2·83-s + ⋯
L(s)  = 1  + 0.447·5-s − 1.47·7-s − 0.141·11-s + 0.528·13-s + 0.268·17-s + 0.229·19-s − 0.452·23-s + 0.200·25-s + 0.147·29-s + 1.30·31-s − 0.659·35-s − 1.02·37-s − 1.31·41-s − 1.09·43-s + 0.316·47-s + 1.17·49-s + 1.86·53-s − 0.0631·55-s − 1.55·59-s + 0.0999·61-s + 0.236·65-s + 1.61·67-s − 1.70·71-s − 0.345·73-s + 0.208·77-s − 1.65·79-s + 1.23·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6840\)    =    \(2^{3} \cdot 3^{2} \cdot 5 \cdot 19\)
Sign: $-1$
Analytic conductor: \(54.6176\)
Root analytic conductor: \(7.39037\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6840,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
19 \( 1 - T \)
good7 \( 1 + 3.90T + 7T^{2} \)
11 \( 1 + 0.468T + 11T^{2} \)
13 \( 1 - 1.90T + 13T^{2} \)
17 \( 1 - 1.10T + 17T^{2} \)
23 \( 1 + 2.17T + 23T^{2} \)
29 \( 1 - 0.796T + 29T^{2} \)
31 \( 1 - 7.24T + 31T^{2} \)
37 \( 1 + 6.23T + 37T^{2} \)
41 \( 1 + 8.40T + 41T^{2} \)
43 \( 1 + 7.18T + 43T^{2} \)
47 \( 1 - 2.17T + 47T^{2} \)
53 \( 1 - 13.5T + 53T^{2} \)
59 \( 1 + 11.9T + 59T^{2} \)
61 \( 1 - 0.780T + 61T^{2} \)
67 \( 1 - 13.2T + 67T^{2} \)
71 \( 1 + 14.3T + 71T^{2} \)
73 \( 1 + 2.95T + 73T^{2} \)
79 \( 1 + 14.6T + 79T^{2} \)
83 \( 1 - 11.2T + 83T^{2} \)
89 \( 1 - 10.9T + 89T^{2} \)
97 \( 1 - 12.5T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.53001030522685103883923390463, −6.72718615875197669438091773649, −6.31503511905559904636431788104, −5.62205565703813515738413152878, −4.83662007157765174790773123120, −3.77031211946358049397173134723, −3.21856053539771664144718154269, −2.40108619857595633889353966534, −1.25457106469569294719990132059, 0, 1.25457106469569294719990132059, 2.40108619857595633889353966534, 3.21856053539771664144718154269, 3.77031211946358049397173134723, 4.83662007157765174790773123120, 5.62205565703813515738413152878, 6.31503511905559904636431788104, 6.72718615875197669438091773649, 7.53001030522685103883923390463

Graph of the $Z$-function along the critical line