L(s) = 1 | + (−1.39 − 0.250i)2-s + (1.87 + 0.697i)4-s + (−0.683 + 3.87i)5-s + (0.181 − 0.104i)7-s + (−2.43 − 1.44i)8-s + (1.92 − 5.22i)10-s + (−0.749 − 0.432i)11-s + (−0.989 + 2.71i)13-s + (−0.279 + 0.100i)14-s + (3.02 + 2.61i)16-s + (2.09 + 1.75i)17-s + (−0.105 + 4.35i)19-s + (−3.98 + 6.78i)20-s + (0.935 + 0.790i)22-s + (2.73 − 0.482i)23-s + ⋯ |
L(s) = 1 | + (−0.984 − 0.177i)2-s + (0.937 + 0.348i)4-s + (−0.305 + 1.73i)5-s + (0.0686 − 0.0396i)7-s + (−0.860 − 0.509i)8-s + (0.607 − 1.65i)10-s + (−0.226 − 0.130i)11-s + (−0.274 + 0.753i)13-s + (−0.0745 + 0.0268i)14-s + (0.756 + 0.653i)16-s + (0.508 + 0.426i)17-s + (−0.0241 + 0.999i)19-s + (−0.890 + 1.51i)20-s + (0.199 + 0.168i)22-s + (0.570 − 0.100i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.850 - 0.526i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 684 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.850 - 0.526i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.155201 + 0.545723i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.155201 + 0.545723i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.39 + 0.250i)T \) |
| 3 | \( 1 \) |
| 19 | \( 1 + (0.105 - 4.35i)T \) |
good | 5 | \( 1 + (0.683 - 3.87i)T + (-4.69 - 1.71i)T^{2} \) |
| 7 | \( 1 + (-0.181 + 0.104i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.749 + 0.432i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.989 - 2.71i)T + (-9.95 - 8.35i)T^{2} \) |
| 17 | \( 1 + (-2.09 - 1.75i)T + (2.95 + 16.7i)T^{2} \) |
| 23 | \( 1 + (-2.73 + 0.482i)T + (21.6 - 7.86i)T^{2} \) |
| 29 | \( 1 + (5.73 + 6.83i)T + (-5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (2.99 + 5.18i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 0.151iT - 37T^{2} \) |
| 41 | \( 1 + (-1.95 - 5.36i)T + (-31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (10.1 + 1.79i)T + (40.4 + 14.7i)T^{2} \) |
| 47 | \( 1 + (-2.13 - 2.54i)T + (-8.16 + 46.2i)T^{2} \) |
| 53 | \( 1 + (9.34 - 1.64i)T + (49.8 - 18.1i)T^{2} \) |
| 59 | \( 1 + (-2.89 - 2.43i)T + (10.2 + 58.1i)T^{2} \) |
| 61 | \( 1 + (-1.46 - 8.30i)T + (-57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (7.42 - 6.23i)T + (11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-2.01 + 11.4i)T + (-66.7 - 24.2i)T^{2} \) |
| 73 | \( 1 + (-6.12 + 2.23i)T + (55.9 - 46.9i)T^{2} \) |
| 79 | \( 1 + (-16.0 + 5.85i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (13.7 - 7.93i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (0.622 - 1.71i)T + (-68.1 - 57.2i)T^{2} \) |
| 97 | \( 1 + (6.40 - 7.62i)T + (-16.8 - 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76797687128211689442473217891, −10.03075240378217066872434829068, −9.343278516782100962084173913271, −7.964636739817931593627931842878, −7.57720288285684233918837954698, −6.60226141002982237471499200631, −5.92593849617120605338215988762, −3.94185545217000665692145709874, −3.02447828013888614684717911368, −1.94304053259237963393093913321,
0.40402686847984828120530133952, 1.65993704902053255937406452110, 3.30326738779949084521786733545, 5.06102311151218021966810427641, 5.32867664104398154947452909645, 6.89214019612111088496111527387, 7.73541753271193243661831325546, 8.524131725948532836539876074290, 9.124125342823379591921754305303, 9.844719568506789610029836722256