| L(s) = 1 | + (−1.36 − 0.360i)2-s + (0.356 − 1.69i)3-s + (1.74 + 0.985i)4-s + (−1.53 − 0.270i)5-s + (−1.09 + 2.18i)6-s − 0.923i·7-s + (−2.02 − 1.97i)8-s + (−2.74 − 1.20i)9-s + (2.00 + 0.923i)10-s + (1.38 + 2.40i)11-s + (2.29 − 2.59i)12-s + (5.07 − 4.26i)13-s + (−0.332 + 1.26i)14-s + (−1.00 + 2.50i)15-s + (2.05 + 3.43i)16-s + (−0.788 − 2.16i)17-s + ⋯ |
| L(s) = 1 | + (−0.966 − 0.254i)2-s + (0.205 − 0.978i)3-s + (0.870 + 0.492i)4-s + (−0.686 − 0.121i)5-s + (−0.448 + 0.893i)6-s − 0.349i·7-s + (−0.715 − 0.698i)8-s + (−0.915 − 0.402i)9-s + (0.632 + 0.291i)10-s + (0.418 + 0.725i)11-s + (0.661 − 0.750i)12-s + (1.40 − 1.18i)13-s + (−0.0889 + 0.337i)14-s + (−0.259 + 0.646i)15-s + (0.514 + 0.857i)16-s + (−0.191 − 0.525i)17-s + ⋯ |
Λ(s)=(=(684s/2ΓC(s)L(s)(−0.997−0.0666i)Λ(2−s)
Λ(s)=(=(684s/2ΓC(s+1/2)L(s)(−0.997−0.0666i)Λ(1−s)
| Degree: |
2 |
| Conductor: |
684
= 22⋅32⋅19
|
| Sign: |
−0.997−0.0666i
|
| Analytic conductor: |
5.46176 |
| Root analytic conductor: |
2.33704 |
| Motivic weight: |
1 |
| Rational: |
no |
| Arithmetic: |
yes |
| Character: |
χ684(119,⋅)
|
| Primitive: |
yes
|
| Self-dual: |
no
|
| Analytic rank: |
0
|
| Selberg data: |
(2, 684, ( :1/2), −0.997−0.0666i)
|
Particular Values
| L(1) |
≈ |
0.0184745+0.553715i |
| L(21) |
≈ |
0.0184745+0.553715i |
| L(23) |
|
not available |
| L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
|---|
| bad | 2 | 1+(1.36+0.360i)T |
| 3 | 1+(−0.356+1.69i)T |
| 19 | 1+(3.66+2.36i)T |
| good | 5 | 1+(1.53+0.270i)T+(4.69+1.71i)T2 |
| 7 | 1+0.923iT−7T2 |
| 11 | 1+(−1.38−2.40i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−5.07+4.26i)T+(2.25−12.8i)T2 |
| 17 | 1+(0.788+2.16i)T+(−13.0+10.9i)T2 |
| 23 | 1+(8.65+3.15i)T+(17.6+14.7i)T2 |
| 29 | 1+(−3.10−3.69i)T+(−5.03+28.5i)T2 |
| 31 | 1+(−3.56−2.06i)T+(15.5+26.8i)T2 |
| 37 | 1+5.89T+37T2 |
| 41 | 1+(−0.179−0.494i)T+(−31.4+26.3i)T2 |
| 43 | 1+(2.04+5.62i)T+(−32.9+27.6i)T2 |
| 47 | 1+(2.45−2.05i)T+(8.16−46.2i)T2 |
| 53 | 1+(3.83+4.57i)T+(−9.20+52.1i)T2 |
| 59 | 1+(2.01+1.69i)T+(10.2+58.1i)T2 |
| 61 | 1+(−2.41−13.7i)T+(−57.3+20.8i)T2 |
| 67 | 1+(14.1−2.49i)T+(62.9−22.9i)T2 |
| 71 | 1+(7.01+5.88i)T+(12.3+69.9i)T2 |
| 73 | 1+(−1.56+8.88i)T+(−68.5−24.9i)T2 |
| 79 | 1+(6.78−8.09i)T+(−13.7−77.7i)T2 |
| 83 | 1−4.95T+83T2 |
| 89 | 1+(−4.70+0.828i)T+(83.6−30.4i)T2 |
| 97 | 1+(−0.862+4.89i)T+(−91.1−33.1i)T2 |
| show more | |
| show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.16291551323617372762406312956, −8.800671032852934774732997519344, −8.378120559197458419127753952965, −7.59554938217738697128464818381, −6.78085015323937676472710089579, −5.98818479812714652994364932109, −4.13188038450588338705338008414, −3.04030366601179285789682919801, −1.72064263710990473630800852689, −0.38404225513943878681392406001,
1.89660669370613944029766633281, 3.49747527743143775127589590638, 4.24708151675710696549407526816, 5.95171421360784305400209461318, 6.30245913239970774713273738060, 7.893017846088385129984111632456, 8.445050183209850125461294644531, 9.059875915340677064149769195204, 9.992045508058294715747635549809, 10.77107236626374366660849070832