Properties

Label 2-6800-1.1-c1-0-107
Degree $2$
Conductor $6800$
Sign $-1$
Analytic cond. $54.2982$
Root an. cond. $7.36873$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.18·3-s + 3.53·7-s − 1.60·9-s − 2.94·11-s − 4.01·13-s + 17-s + 6.97·19-s − 4.18·21-s − 6.12·23-s + 5.44·27-s + 5.30·29-s − 6.49·31-s + 3.48·33-s − 3.43·37-s + 4.74·39-s + 4.61·41-s + 10.2·43-s + 3.67·47-s + 5.50·49-s − 1.18·51-s + 6.77·53-s − 8.24·57-s − 9.92·59-s − 2.36·61-s − 5.66·63-s − 9.56·67-s + 7.24·69-s + ⋯
L(s)  = 1  − 0.682·3-s + 1.33·7-s − 0.534·9-s − 0.888·11-s − 1.11·13-s + 0.242·17-s + 1.60·19-s − 0.912·21-s − 1.27·23-s + 1.04·27-s + 0.984·29-s − 1.16·31-s + 0.606·33-s − 0.564·37-s + 0.759·39-s + 0.720·41-s + 1.56·43-s + 0.536·47-s + 0.786·49-s − 0.165·51-s + 0.930·53-s − 1.09·57-s − 1.29·59-s − 0.302·61-s − 0.713·63-s − 1.16·67-s + 0.871·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6800\)    =    \(2^{4} \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(54.2982\)
Root analytic conductor: \(7.36873\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + 1.18T + 3T^{2} \)
7 \( 1 - 3.53T + 7T^{2} \)
11 \( 1 + 2.94T + 11T^{2} \)
13 \( 1 + 4.01T + 13T^{2} \)
19 \( 1 - 6.97T + 19T^{2} \)
23 \( 1 + 6.12T + 23T^{2} \)
29 \( 1 - 5.30T + 29T^{2} \)
31 \( 1 + 6.49T + 31T^{2} \)
37 \( 1 + 3.43T + 37T^{2} \)
41 \( 1 - 4.61T + 41T^{2} \)
43 \( 1 - 10.2T + 43T^{2} \)
47 \( 1 - 3.67T + 47T^{2} \)
53 \( 1 - 6.77T + 53T^{2} \)
59 \( 1 + 9.92T + 59T^{2} \)
61 \( 1 + 2.36T + 61T^{2} \)
67 \( 1 + 9.56T + 67T^{2} \)
71 \( 1 + 5.51T + 71T^{2} \)
73 \( 1 + 2.00T + 73T^{2} \)
79 \( 1 + 10.5T + 79T^{2} \)
83 \( 1 - 9.07T + 83T^{2} \)
89 \( 1 - 2.63T + 89T^{2} \)
97 \( 1 + 5.86T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.65153633326277655998305536946, −7.12697408990170238441240360773, −5.87381610290064325195387570447, −5.51684857575011587833097295307, −4.92222877262111973827717918288, −4.25229139881202689924247049029, −3.00983902749006884225984211707, −2.30018758362879611270537041586, −1.20154114881977391814604497764, 0, 1.20154114881977391814604497764, 2.30018758362879611270537041586, 3.00983902749006884225984211707, 4.25229139881202689924247049029, 4.92222877262111973827717918288, 5.51684857575011587833097295307, 5.87381610290064325195387570447, 7.12697408990170238441240360773, 7.65153633326277655998305536946

Graph of the $Z$-function along the critical line