L(s) = 1 | + (0.731 + 0.731i)3-s + (−2.20 + 0.357i)5-s + (1.16 − 1.16i)7-s − 1.92i·9-s + (2.68 + 2.68i)11-s + 3.47i·13-s + (−1.87 − 1.35i)15-s + (4.11 + 0.227i)17-s + 6.84i·19-s + 1.70·21-s + (5.10 − 5.10i)23-s + (4.74 − 1.58i)25-s + (3.60 − 3.60i)27-s + (−3.39 + 3.39i)29-s + (−1.87 + 1.87i)31-s + ⋯ |
L(s) = 1 | + (0.422 + 0.422i)3-s + (−0.987 + 0.160i)5-s + (0.441 − 0.441i)7-s − 0.642i·9-s + (0.809 + 0.809i)11-s + 0.964i·13-s + (−0.484 − 0.349i)15-s + (0.998 + 0.0552i)17-s + 1.56i·19-s + 0.373·21-s + (1.06 − 1.06i)23-s + (0.948 − 0.316i)25-s + (0.694 − 0.694i)27-s + (−0.629 + 0.629i)29-s + (−0.336 + 0.336i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.719 - 0.695i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.719 - 0.695i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.49327 + 0.603746i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.49327 + 0.603746i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.20 - 0.357i)T \) |
| 17 | \( 1 + (-4.11 - 0.227i)T \) |
good | 3 | \( 1 + (-0.731 - 0.731i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1.16 + 1.16i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.68 - 2.68i)T + 11iT^{2} \) |
| 13 | \( 1 - 3.47iT - 13T^{2} \) |
| 19 | \( 1 - 6.84iT - 19T^{2} \) |
| 23 | \( 1 + (-5.10 + 5.10i)T - 23iT^{2} \) |
| 29 | \( 1 + (3.39 - 3.39i)T - 29iT^{2} \) |
| 31 | \( 1 + (1.87 - 1.87i)T - 31iT^{2} \) |
| 37 | \( 1 + (-2.43 - 2.43i)T + 37iT^{2} \) |
| 41 | \( 1 + (-8.54 - 8.54i)T + 41iT^{2} \) |
| 43 | \( 1 + 7.78T + 43T^{2} \) |
| 47 | \( 1 + 5.02iT - 47T^{2} \) |
| 53 | \( 1 - 4.48T + 53T^{2} \) |
| 59 | \( 1 + 12.9iT - 59T^{2} \) |
| 61 | \( 1 + (3.33 + 3.33i)T + 61iT^{2} \) |
| 67 | \( 1 - 2.91iT - 67T^{2} \) |
| 71 | \( 1 + (6.72 - 6.72i)T - 71iT^{2} \) |
| 73 | \( 1 + (7.27 + 7.27i)T + 73iT^{2} \) |
| 79 | \( 1 + (5.70 + 5.70i)T + 79iT^{2} \) |
| 83 | \( 1 - 7.50T + 83T^{2} \) |
| 89 | \( 1 - 5.35T + 89T^{2} \) |
| 97 | \( 1 + (-9.65 - 9.65i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52972642400861807510625572116, −9.691518277796898274419472851932, −8.892843098058808247121110311271, −8.010799887590794536310366326674, −7.16041097844326887248672829319, −6.34829973584821471290312163769, −4.73574088973279206694641200984, −4.02759811943717523194062516009, −3.25138769725563808590519879981, −1.39207308711954001883218274629,
0.996882918495336536058647858678, 2.68062576972839379872355487933, 3.64225963930961107692149692806, 4.93835677836780590762189218422, 5.76972443956122733625994640669, 7.30347691150212205576736865750, 7.64964328733664123168682956541, 8.652455390618065728541959837948, 9.153994178615563787709375459612, 10.61190714966204876092510522427