L(s) = 1 | + (0.513 − 0.513i)3-s + (−2.10 − 0.759i)5-s + (−0.542 − 0.542i)7-s + 2.47i·9-s + (−2.81 + 2.81i)11-s + 1.01i·13-s + (−1.46 + 0.689i)15-s + (−4.11 − 0.167i)17-s + 2.31i·19-s − 0.557·21-s + (−4.31 − 4.31i)23-s + (3.84 + 3.19i)25-s + (2.80 + 2.80i)27-s + (2.92 + 2.92i)29-s + (5.35 + 5.35i)31-s + ⋯ |
L(s) = 1 | + (0.296 − 0.296i)3-s + (−0.940 − 0.339i)5-s + (−0.205 − 0.205i)7-s + 0.824i·9-s + (−0.848 + 0.848i)11-s + 0.280i·13-s + (−0.379 + 0.178i)15-s + (−0.999 − 0.0405i)17-s + 0.530i·19-s − 0.121·21-s + (−0.898 − 0.898i)23-s + (0.769 + 0.639i)25-s + (0.540 + 0.540i)27-s + (0.543 + 0.543i)29-s + (0.960 + 0.960i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.497 - 0.867i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.497 - 0.867i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.277404 + 0.478882i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.277404 + 0.478882i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.10 + 0.759i)T \) |
| 17 | \( 1 + (4.11 + 0.167i)T \) |
good | 3 | \( 1 + (-0.513 + 0.513i)T - 3iT^{2} \) |
| 7 | \( 1 + (0.542 + 0.542i)T + 7iT^{2} \) |
| 11 | \( 1 + (2.81 - 2.81i)T - 11iT^{2} \) |
| 13 | \( 1 - 1.01iT - 13T^{2} \) |
| 19 | \( 1 - 2.31iT - 19T^{2} \) |
| 23 | \( 1 + (4.31 + 4.31i)T + 23iT^{2} \) |
| 29 | \( 1 + (-2.92 - 2.92i)T + 29iT^{2} \) |
| 31 | \( 1 + (-5.35 - 5.35i)T + 31iT^{2} \) |
| 37 | \( 1 + (7.83 - 7.83i)T - 37iT^{2} \) |
| 41 | \( 1 + (6.53 - 6.53i)T - 41iT^{2} \) |
| 43 | \( 1 + 2.05T + 43T^{2} \) |
| 47 | \( 1 + 12.2iT - 47T^{2} \) |
| 53 | \( 1 - 6.90T + 53T^{2} \) |
| 59 | \( 1 - 6.13iT - 59T^{2} \) |
| 61 | \( 1 + (10.2 - 10.2i)T - 61iT^{2} \) |
| 67 | \( 1 + 8.92iT - 67T^{2} \) |
| 71 | \( 1 + (8.76 + 8.76i)T + 71iT^{2} \) |
| 73 | \( 1 + (6.18 - 6.18i)T - 73iT^{2} \) |
| 79 | \( 1 + (-10.0 + 10.0i)T - 79iT^{2} \) |
| 83 | \( 1 - 3.11T + 83T^{2} \) |
| 89 | \( 1 + 1.08T + 89T^{2} \) |
| 97 | \( 1 + (3.34 - 3.34i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.49240318646305597877717765895, −10.24170416427941141717432284696, −8.644835797443619225134729370859, −8.305741725130314062571760457935, −7.31433635937621104336190435827, −6.64777113806561174368416888988, −5.01909326226558672848381132570, −4.47185605477836491034685442837, −3.11081339757837768806558182553, −1.84781722015798992620636874100,
0.26963946133542833077879086453, 2.63469627469195338471932847195, 3.52556262644322038028722505430, 4.43208918553824820616115442251, 5.76050732082299708507376138245, 6.66983363621776890389600836367, 7.71940533471537285895235505992, 8.467073398280805958972475167222, 9.247464755110688203724941448986, 10.26800924937641179128307849665