L(s) = 1 | + (0.253 − 0.253i)3-s + (1.48 + 1.66i)5-s + (−3.26 − 3.26i)7-s + 2.87i·9-s + (−2.95 + 2.95i)11-s + 5.14i·13-s + (0.799 + 0.0451i)15-s + (4.07 + 0.613i)17-s + 1.32i·19-s − 1.65·21-s + (2.97 + 2.97i)23-s + (−0.563 + 4.96i)25-s + (1.48 + 1.48i)27-s + (−5.42 − 5.42i)29-s + (5.27 + 5.27i)31-s + ⋯ |
L(s) = 1 | + (0.146 − 0.146i)3-s + (0.666 + 0.745i)5-s + (−1.23 − 1.23i)7-s + 0.957i·9-s + (−0.890 + 0.890i)11-s + 1.42i·13-s + (0.206 + 0.0116i)15-s + (0.988 + 0.148i)17-s + 0.304i·19-s − 0.360·21-s + (0.620 + 0.620i)23-s + (−0.112 + 0.993i)25-s + (0.286 + 0.286i)27-s + (−1.00 − 1.00i)29-s + (0.947 + 0.947i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0832 - 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0832 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.931844 + 0.857279i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.931844 + 0.857279i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.48 - 1.66i)T \) |
| 17 | \( 1 + (-4.07 - 0.613i)T \) |
good | 3 | \( 1 + (-0.253 + 0.253i)T - 3iT^{2} \) |
| 7 | \( 1 + (3.26 + 3.26i)T + 7iT^{2} \) |
| 11 | \( 1 + (2.95 - 2.95i)T - 11iT^{2} \) |
| 13 | \( 1 - 5.14iT - 13T^{2} \) |
| 19 | \( 1 - 1.32iT - 19T^{2} \) |
| 23 | \( 1 + (-2.97 - 2.97i)T + 23iT^{2} \) |
| 29 | \( 1 + (5.42 + 5.42i)T + 29iT^{2} \) |
| 31 | \( 1 + (-5.27 - 5.27i)T + 31iT^{2} \) |
| 37 | \( 1 + (0.749 - 0.749i)T - 37iT^{2} \) |
| 41 | \( 1 + (-7.59 + 7.59i)T - 41iT^{2} \) |
| 43 | \( 1 + 4.24T + 43T^{2} \) |
| 47 | \( 1 + 4.44iT - 47T^{2} \) |
| 53 | \( 1 + 11.7T + 53T^{2} \) |
| 59 | \( 1 - 9.62iT - 59T^{2} \) |
| 61 | \( 1 + (-4.29 + 4.29i)T - 61iT^{2} \) |
| 67 | \( 1 - 5.25iT - 67T^{2} \) |
| 71 | \( 1 + (-0.879 - 0.879i)T + 71iT^{2} \) |
| 73 | \( 1 + (-3.95 + 3.95i)T - 73iT^{2} \) |
| 79 | \( 1 + (-1.97 + 1.97i)T - 79iT^{2} \) |
| 83 | \( 1 + 2.75T + 83T^{2} \) |
| 89 | \( 1 - 1.24T + 89T^{2} \) |
| 97 | \( 1 + (7.24 - 7.24i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39583830505698589573054271980, −10.02629362326116835447028900822, −9.273084070519340627929338366138, −7.72198556560039057845592777043, −7.20897547010352352488468115175, −6.46536493785432933181678198616, −5.31315047953634490592805397097, −4.08675158560233065505252637578, −2.97390256506585476520319419181, −1.80703038507079874511794028000,
0.64824368234881242370024159107, 2.75749024312211438910610327510, 3.28004502973467760398334490661, 5.08499702775179471789909044012, 5.80910943969149862327597695248, 6.35460772103908041566266776972, 7.936781596609548710664338083559, 8.695766244551458500015343496167, 9.501486079336020504680390464445, 9.936743011997094985756651936893