L(s) = 1 | + (−0.803 + 0.803i)3-s + (2.02 + 0.938i)5-s + (0.286 + 0.286i)7-s + 1.70i·9-s + (4.32 − 4.32i)11-s − 2.18i·13-s + (−2.38 + 0.876i)15-s + (1.66 + 3.77i)17-s + 2.33i·19-s − 0.460·21-s + (−3.22 − 3.22i)23-s + (3.23 + 3.81i)25-s + (−3.78 − 3.78i)27-s + (5.33 + 5.33i)29-s + (1.07 + 1.07i)31-s + ⋯ |
L(s) = 1 | + (−0.463 + 0.463i)3-s + (0.907 + 0.419i)5-s + (0.108 + 0.108i)7-s + 0.569i·9-s + (1.30 − 1.30i)11-s − 0.605i·13-s + (−0.615 + 0.226i)15-s + (0.404 + 0.914i)17-s + 0.535i·19-s − 0.100·21-s + (−0.672 − 0.672i)23-s + (0.647 + 0.762i)25-s + (−0.728 − 0.728i)27-s + (0.990 + 0.990i)29-s + (0.193 + 0.193i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.628 - 0.777i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.628 - 0.777i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.46424 + 0.699301i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.46424 + 0.699301i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-2.02 - 0.938i)T \) |
| 17 | \( 1 + (-1.66 - 3.77i)T \) |
good | 3 | \( 1 + (0.803 - 0.803i)T - 3iT^{2} \) |
| 7 | \( 1 + (-0.286 - 0.286i)T + 7iT^{2} \) |
| 11 | \( 1 + (-4.32 + 4.32i)T - 11iT^{2} \) |
| 13 | \( 1 + 2.18iT - 13T^{2} \) |
| 19 | \( 1 - 2.33iT - 19T^{2} \) |
| 23 | \( 1 + (3.22 + 3.22i)T + 23iT^{2} \) |
| 29 | \( 1 + (-5.33 - 5.33i)T + 29iT^{2} \) |
| 31 | \( 1 + (-1.07 - 1.07i)T + 31iT^{2} \) |
| 37 | \( 1 + (5.44 - 5.44i)T - 37iT^{2} \) |
| 41 | \( 1 + (-0.0474 + 0.0474i)T - 41iT^{2} \) |
| 43 | \( 1 - 3.53T + 43T^{2} \) |
| 47 | \( 1 - 2.96iT - 47T^{2} \) |
| 53 | \( 1 - 9.31T + 53T^{2} \) |
| 59 | \( 1 - 2.07iT - 59T^{2} \) |
| 61 | \( 1 + (0.0921 - 0.0921i)T - 61iT^{2} \) |
| 67 | \( 1 - 14.7iT - 67T^{2} \) |
| 71 | \( 1 + (4.26 + 4.26i)T + 71iT^{2} \) |
| 73 | \( 1 + (1.58 - 1.58i)T - 73iT^{2} \) |
| 79 | \( 1 + (-0.537 + 0.537i)T - 79iT^{2} \) |
| 83 | \( 1 + 6.51T + 83T^{2} \) |
| 89 | \( 1 + 6.83T + 89T^{2} \) |
| 97 | \( 1 + (-10.6 + 10.6i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.34063277762025392029362099039, −10.19943770478796905274058569885, −8.828955439852668344504553342273, −8.251490497664706829023831346975, −6.82238511856137126733861921010, −5.96760466967760320717490306762, −5.43283982868927092670649108634, −4.10736279449254357892153439133, −2.98050890019706629877778401886, −1.45905554631598029906410534664,
1.09660989789666197140711656158, 2.19808860689368871121100625222, 3.96640358842857514525566866364, 4.93371026183641606668578283493, 6.04206948550748470656628365961, 6.73252110630167856352362338857, 7.47533823529815197737903551665, 8.979129388338107393177174511203, 9.444936677912154923098042314108, 10.15072120676709989445708036092