| L(s) = 1 | + (−1 − i)3-s + (1 + 2i)5-s + (−1 + i)7-s − i·9-s + (−1 − i)11-s + 4i·13-s + (1 − 3i)15-s + (1 + 4i)17-s + 2i·19-s + 2·21-s + (−1 + i)23-s + (−3 + 4i)25-s + (−4 + 4i)27-s + (−1 + i)29-s + (3 − 3i)31-s + ⋯ |
| L(s) = 1 | + (−0.577 − 0.577i)3-s + (0.447 + 0.894i)5-s + (−0.377 + 0.377i)7-s − 0.333i·9-s + (−0.301 − 0.301i)11-s + 1.10i·13-s + (0.258 − 0.774i)15-s + (0.242 + 0.970i)17-s + 0.458i·19-s + 0.436·21-s + (−0.208 + 0.208i)23-s + (−0.600 + 0.800i)25-s + (−0.769 + 0.769i)27-s + (−0.185 + 0.185i)29-s + (0.538 − 0.538i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.197 - 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.197 - 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.762991 + 0.624314i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.762991 + 0.624314i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1 - 2i)T \) |
| 17 | \( 1 + (-1 - 4i)T \) |
| good | 3 | \( 1 + (1 + i)T + 3iT^{2} \) |
| 7 | \( 1 + (1 - i)T - 7iT^{2} \) |
| 11 | \( 1 + (1 + i)T + 11iT^{2} \) |
| 13 | \( 1 - 4iT - 13T^{2} \) |
| 19 | \( 1 - 2iT - 19T^{2} \) |
| 23 | \( 1 + (1 - i)T - 23iT^{2} \) |
| 29 | \( 1 + (1 - i)T - 29iT^{2} \) |
| 31 | \( 1 + (-3 + 3i)T - 31iT^{2} \) |
| 37 | \( 1 + (-3 - 3i)T + 37iT^{2} \) |
| 41 | \( 1 + (-1 - i)T + 41iT^{2} \) |
| 43 | \( 1 + 4T + 43T^{2} \) |
| 47 | \( 1 - 10iT - 47T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 - 10iT - 59T^{2} \) |
| 61 | \( 1 + (-7 - 7i)T + 61iT^{2} \) |
| 67 | \( 1 - 2iT - 67T^{2} \) |
| 71 | \( 1 + (-11 + 11i)T - 71iT^{2} \) |
| 73 | \( 1 + (7 + 7i)T + 73iT^{2} \) |
| 79 | \( 1 + (7 + 7i)T + 79iT^{2} \) |
| 83 | \( 1 - 12T + 83T^{2} \) |
| 89 | \( 1 + 10T + 89T^{2} \) |
| 97 | \( 1 + (3 + 3i)T + 97iT^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.75227346075054668186379534739, −9.856052856847112327517801967988, −9.099613978411184334948634543238, −7.904237940730556258796586112853, −6.92452959911594060066744817243, −6.19066820880002306896980718421, −5.72869083098283580177740144764, −4.08735658591105700612540569845, −2.90988881439706388512347512292, −1.60217272815744785465613517121,
0.56679093429933113851747296220, 2.42767364814361590526170094616, 3.91907614118312828060668416747, 5.12650900895797829435051017096, 5.34724257173719048720579929272, 6.65429512895189470741034803590, 7.77190327029488176361995617033, 8.610676559349124628417149834915, 9.840002603775836822458373304433, 10.04522248842947136815887678194