L(s) = 1 | + (−1.27 + 0.619i)2-s + 3.03·3-s + (1.23 − 1.57i)4-s + 5-s + (−3.85 + 1.88i)6-s + 1.14i·7-s + (−0.588 + 2.76i)8-s + 6.20·9-s + (−1.27 + 0.619i)10-s + 1.02·11-s + (3.73 − 4.78i)12-s + 5.48i·13-s + (−0.710 − 1.45i)14-s + 3.03·15-s + (−0.967 − 3.88i)16-s + (−3.36 − 2.38i)17-s + ⋯ |
L(s) = 1 | + (−0.898 + 0.438i)2-s + 1.75·3-s + (0.615 − 0.788i)4-s + 0.447·5-s + (−1.57 + 0.767i)6-s + 0.433i·7-s + (−0.207 + 0.978i)8-s + 2.06·9-s + (−0.401 + 0.196i)10-s + 0.308·11-s + (1.07 − 1.37i)12-s + 1.52i·13-s + (−0.189 − 0.389i)14-s + 0.783·15-s + (−0.241 − 0.970i)16-s + (−0.815 − 0.578i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.735 - 0.677i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.735 - 0.677i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.83798 + 0.717826i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.83798 + 0.717826i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.27 - 0.619i)T \) |
| 5 | \( 1 - T \) |
| 17 | \( 1 + (3.36 + 2.38i)T \) |
good | 3 | \( 1 - 3.03T + 3T^{2} \) |
| 7 | \( 1 - 1.14iT - 7T^{2} \) |
| 11 | \( 1 - 1.02T + 11T^{2} \) |
| 13 | \( 1 - 5.48iT - 13T^{2} \) |
| 19 | \( 1 - 0.131iT - 19T^{2} \) |
| 23 | \( 1 - 2.38iT - 23T^{2} \) |
| 29 | \( 1 - 3.08T + 29T^{2} \) |
| 31 | \( 1 + 0.752iT - 31T^{2} \) |
| 37 | \( 1 + 7.71T + 37T^{2} \) |
| 41 | \( 1 + 6.10iT - 41T^{2} \) |
| 43 | \( 1 + 9.64iT - 43T^{2} \) |
| 47 | \( 1 + 3.00T + 47T^{2} \) |
| 53 | \( 1 + 13.4iT - 53T^{2} \) |
| 59 | \( 1 + 10.0iT - 59T^{2} \) |
| 61 | \( 1 - 3.72T + 61T^{2} \) |
| 67 | \( 1 - 3.72iT - 67T^{2} \) |
| 71 | \( 1 + 6.62iT - 71T^{2} \) |
| 73 | \( 1 - 14.9iT - 73T^{2} \) |
| 79 | \( 1 - 13.7iT - 79T^{2} \) |
| 83 | \( 1 - 3.85iT - 83T^{2} \) |
| 89 | \( 1 + 3.64T + 89T^{2} \) |
| 97 | \( 1 - 3.73iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.04103205688460815064161394401, −9.427009775866678408201081896110, −8.825398587165593262495082515691, −8.371038806224990530260320036460, −7.09320794116043756815155004062, −6.73003515462263592356029259703, −5.20626781339758102599700696096, −3.85105184836070205919290325849, −2.42517821432172883517508192587, −1.79000065380338496340647060319,
1.35387498283910546857077811325, 2.57728818350625818371586100271, 3.29797919670435709469348242343, 4.40113160048506036898879537163, 6.29934739042821732687801487693, 7.33177710770249072747557440735, 8.062404884196703727409362272327, 8.705157062867490512487262479864, 9.380227254272523622462825347591, 10.31266383229105498196927281104