L(s) = 1 | + (1.02 − 0.971i)2-s − 0.744·3-s + (0.113 − 1.99i)4-s + 5-s + (−0.765 + 0.723i)6-s + 0.964i·7-s + (−1.82 − 2.16i)8-s − 2.44·9-s + (1.02 − 0.971i)10-s − 4.79·11-s + (−0.0847 + 1.48i)12-s − 5.30i·13-s + (0.936 + 0.991i)14-s − 0.744·15-s + (−3.97 − 0.454i)16-s + (1.23 − 3.93i)17-s + ⋯ |
L(s) = 1 | + (0.726 − 0.686i)2-s − 0.429·3-s + (0.0568 − 0.998i)4-s + 0.447·5-s + (−0.312 + 0.295i)6-s + 0.364i·7-s + (−0.644 − 0.764i)8-s − 0.815·9-s + (0.325 − 0.307i)10-s − 1.44·11-s + (−0.0244 + 0.429i)12-s − 1.47i·13-s + (0.250 + 0.265i)14-s − 0.192·15-s + (−0.993 − 0.113i)16-s + (0.298 − 0.954i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.922 + 0.386i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.922 + 0.386i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.264936 - 1.31846i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.264936 - 1.31846i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.02 + 0.971i)T \) |
| 5 | \( 1 - T \) |
| 17 | \( 1 + (-1.23 + 3.93i)T \) |
good | 3 | \( 1 + 0.744T + 3T^{2} \) |
| 7 | \( 1 - 0.964iT - 7T^{2} \) |
| 11 | \( 1 + 4.79T + 11T^{2} \) |
| 13 | \( 1 + 5.30iT - 13T^{2} \) |
| 19 | \( 1 + 6.23iT - 19T^{2} \) |
| 23 | \( 1 - 3.62iT - 23T^{2} \) |
| 29 | \( 1 - 7.67T + 29T^{2} \) |
| 31 | \( 1 + 3.78iT - 31T^{2} \) |
| 37 | \( 1 + 10.4T + 37T^{2} \) |
| 41 | \( 1 + 0.571iT - 41T^{2} \) |
| 43 | \( 1 - 8.74iT - 43T^{2} \) |
| 47 | \( 1 - 6.19T + 47T^{2} \) |
| 53 | \( 1 + 4.27iT - 53T^{2} \) |
| 59 | \( 1 - 11.5iT - 59T^{2} \) |
| 61 | \( 1 + 4.51T + 61T^{2} \) |
| 67 | \( 1 + 3.12iT - 67T^{2} \) |
| 71 | \( 1 + 7.08iT - 71T^{2} \) |
| 73 | \( 1 + 4.24iT - 73T^{2} \) |
| 79 | \( 1 - 7.59iT - 79T^{2} \) |
| 83 | \( 1 - 1.74iT - 83T^{2} \) |
| 89 | \( 1 - 18.4T + 89T^{2} \) |
| 97 | \( 1 - 5.26iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.46804139565046874460704115870, −9.518797314363830190134077595472, −8.526827572871021289203440896192, −7.34925330476234405144346448190, −6.09437462887772522940871110936, −5.32193313458346249568553086283, −4.94890797289343508543157762809, −3.02042137912313787196666874510, −2.60911203417290371003694125628, −0.55636054294359449171420092391,
2.20909605131064171720624361654, 3.51204517384432342811891485022, 4.68048626017197770499511705845, 5.53922848830841497061698920456, 6.26401485959784233647500522719, 7.12217921793714992233422815775, 8.237680061091272793325441404514, 8.781222206957959370665939114443, 10.29383556191697828617667135606, 10.76340639083899047417839928546