L(s) = 1 | + (0.458 + 1.33i)2-s + 2.54·3-s + (−1.57 + 1.22i)4-s + 5-s + (1.16 + 3.40i)6-s + 0.654i·7-s + (−2.36 − 1.54i)8-s + 3.48·9-s + (0.458 + 1.33i)10-s + 2.31·11-s + (−4.02 + 3.12i)12-s − 0.495i·13-s + (−0.875 + 0.300i)14-s + 2.54·15-s + (0.987 − 3.87i)16-s + (2.19 + 3.48i)17-s + ⋯ |
L(s) = 1 | + (0.324 + 0.945i)2-s + 1.47·3-s + (−0.789 + 0.613i)4-s + 0.447·5-s + (0.477 + 1.39i)6-s + 0.247i·7-s + (−0.836 − 0.547i)8-s + 1.16·9-s + (0.145 + 0.423i)10-s + 0.698·11-s + (−1.16 + 0.902i)12-s − 0.137i·13-s + (−0.233 + 0.0802i)14-s + 0.657·15-s + (0.246 − 0.969i)16-s + (0.532 + 0.846i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0179 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0179 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.00862 + 1.97292i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.00862 + 1.97292i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.458 - 1.33i)T \) |
| 5 | \( 1 - T \) |
| 17 | \( 1 + (-2.19 - 3.48i)T \) |
good | 3 | \( 1 - 2.54T + 3T^{2} \) |
| 7 | \( 1 - 0.654iT - 7T^{2} \) |
| 11 | \( 1 - 2.31T + 11T^{2} \) |
| 13 | \( 1 + 0.495iT - 13T^{2} \) |
| 19 | \( 1 - 2.57iT - 19T^{2} \) |
| 23 | \( 1 - 0.188iT - 23T^{2} \) |
| 29 | \( 1 + 6.85T + 29T^{2} \) |
| 31 | \( 1 + 3.96iT - 31T^{2} \) |
| 37 | \( 1 + 3.06T + 37T^{2} \) |
| 41 | \( 1 + 3.21iT - 41T^{2} \) |
| 43 | \( 1 + 3.55iT - 43T^{2} \) |
| 47 | \( 1 + 3.43T + 47T^{2} \) |
| 53 | \( 1 + 8.47iT - 53T^{2} \) |
| 59 | \( 1 + 0.432iT - 59T^{2} \) |
| 61 | \( 1 + 3.55T + 61T^{2} \) |
| 67 | \( 1 + 8.66iT - 67T^{2} \) |
| 71 | \( 1 - 9.72iT - 71T^{2} \) |
| 73 | \( 1 + 3.67iT - 73T^{2} \) |
| 79 | \( 1 + 4.08iT - 79T^{2} \) |
| 83 | \( 1 + 15.3iT - 83T^{2} \) |
| 89 | \( 1 - 8.98T + 89T^{2} \) |
| 97 | \( 1 - 11.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29268749871852309889842390104, −9.409935783428150124925301536975, −8.873875414286839551134021560803, −8.078702549978755223377043455138, −7.38283163948510623945711219957, −6.28175370348546032170530714946, −5.41792303971835802701138018762, −4.00158226416801716400224160619, −3.36441196241890042390326709240, −1.95455615244472757676455122963,
1.41568696759676052838864912769, 2.56584530779796735192174185892, 3.39833988279422328714206433951, 4.34477121675495634825554821297, 5.49755427971003386772643575159, 6.83363834626662337865593734799, 7.901506269964771422417190782014, 9.006676529383622512198308765435, 9.298639948433322934746871420929, 10.11616114507044132956930521160