L(s) = 1 | + (−0.0399 + 1.41i)2-s − 2.61·3-s + (−1.99 − 0.113i)4-s + 5-s + (0.104 − 3.69i)6-s + 3.54i·7-s + (0.239 − 2.81i)8-s + 3.84·9-s + (−0.0399 + 1.41i)10-s − 6.42·11-s + (5.22 + 0.295i)12-s − 2.23i·13-s + (−5.01 − 0.141i)14-s − 2.61·15-s + (3.97 + 0.451i)16-s + (−2.09 + 3.54i)17-s + ⋯ |
L(s) = 1 | + (−0.0282 + 0.999i)2-s − 1.51·3-s + (−0.998 − 0.0565i)4-s + 0.447·5-s + (0.0427 − 1.51i)6-s + 1.34i·7-s + (0.0847 − 0.996i)8-s + 1.28·9-s + (−0.0126 + 0.447i)10-s − 1.93·11-s + (1.50 + 0.0853i)12-s − 0.619i·13-s + (−1.34 − 0.0379i)14-s − 0.675·15-s + (0.993 + 0.112i)16-s + (−0.509 + 0.860i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.814 + 0.580i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.814 + 0.580i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.252333 - 0.0806949i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.252333 - 0.0806949i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0399 - 1.41i)T \) |
| 5 | \( 1 - T \) |
| 17 | \( 1 + (2.09 - 3.54i)T \) |
good | 3 | \( 1 + 2.61T + 3T^{2} \) |
| 7 | \( 1 - 3.54iT - 7T^{2} \) |
| 11 | \( 1 + 6.42T + 11T^{2} \) |
| 13 | \( 1 + 2.23iT - 13T^{2} \) |
| 19 | \( 1 + 0.717iT - 19T^{2} \) |
| 23 | \( 1 + 3.87iT - 23T^{2} \) |
| 29 | \( 1 + 1.66T + 29T^{2} \) |
| 31 | \( 1 + 6.59iT - 31T^{2} \) |
| 37 | \( 1 - 9.42T + 37T^{2} \) |
| 41 | \( 1 + 9.35iT - 41T^{2} \) |
| 43 | \( 1 - 4.89iT - 43T^{2} \) |
| 47 | \( 1 - 7.93T + 47T^{2} \) |
| 53 | \( 1 + 6.51iT - 53T^{2} \) |
| 59 | \( 1 + 6.56iT - 59T^{2} \) |
| 61 | \( 1 + 6.75T + 61T^{2} \) |
| 67 | \( 1 + 6.25iT - 67T^{2} \) |
| 71 | \( 1 - 9.73iT - 71T^{2} \) |
| 73 | \( 1 + 0.392iT - 73T^{2} \) |
| 79 | \( 1 + 11.0iT - 79T^{2} \) |
| 83 | \( 1 - 4.75iT - 83T^{2} \) |
| 89 | \( 1 + 10.5T + 89T^{2} \) |
| 97 | \( 1 + 3.76iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.45697923232640829394134390669, −9.567597936765217556661598294067, −8.487456198590062934046811009081, −7.72976016038733883896251108578, −6.50331917120683382760486634343, −5.67996825310082954225034574612, −5.50465575102669113384470646447, −4.50795216037942074491636635009, −2.51231041544538864314722580199, −0.20045466416331419656324043599,
1.12048013348833204967666648353, 2.73430596364199569668183188068, 4.28179202497328442493192043723, 4.99876042521869111106377568398, 5.77948867704831753741475824831, 7.04257935160507655988842219359, 7.85739830208419922158392668953, 9.298885104617462915951437787615, 10.18882375642128364665762526711, 10.66661559928224917713662685800