Properties

Label 2-680-680.99-c1-0-63
Degree $2$
Conductor $680$
Sign $-0.543 + 0.839i$
Analytic cond. $5.42982$
Root an. cond. $2.33019$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.37 + 0.328i)2-s + (−1.63 − 0.324i)3-s + (1.78 − 0.902i)4-s + (0.608 − 2.15i)5-s + (2.35 − 0.0889i)6-s + (−0.693 − 0.463i)7-s + (−2.15 + 1.82i)8-s + (−0.211 − 0.0876i)9-s + (−0.131 + 3.15i)10-s + (5.70 − 1.13i)11-s + (−3.20 + 0.894i)12-s + (−0.791 − 0.791i)13-s + (1.10 + 0.409i)14-s + (−1.69 + 3.31i)15-s + (2.37 − 3.22i)16-s + (1.86 − 3.67i)17-s + ⋯
L(s)  = 1  + (−0.972 + 0.232i)2-s + (−0.942 − 0.187i)3-s + (0.892 − 0.451i)4-s + (0.272 − 0.962i)5-s + (0.960 − 0.0363i)6-s + (−0.261 − 0.175i)7-s + (−0.763 + 0.646i)8-s + (−0.0705 − 0.0292i)9-s + (−0.0415 + 0.999i)10-s + (1.71 − 0.341i)11-s + (−0.925 + 0.258i)12-s + (−0.219 − 0.219i)13-s + (0.295 + 0.109i)14-s + (−0.437 + 0.855i)15-s + (0.592 − 0.805i)16-s + (0.451 − 0.892i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.543 + 0.839i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.543 + 0.839i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(680\)    =    \(2^{3} \cdot 5 \cdot 17\)
Sign: $-0.543 + 0.839i$
Analytic conductor: \(5.42982\)
Root analytic conductor: \(2.33019\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{680} (99, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 680,\ (\ :1/2),\ -0.543 + 0.839i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.271651 - 0.499363i\)
\(L(\frac12)\) \(\approx\) \(0.271651 - 0.499363i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.37 - 0.328i)T \)
5 \( 1 + (-0.608 + 2.15i)T \)
17 \( 1 + (-1.86 + 3.67i)T \)
good3 \( 1 + (1.63 + 0.324i)T + (2.77 + 1.14i)T^{2} \)
7 \( 1 + (0.693 + 0.463i)T + (2.67 + 6.46i)T^{2} \)
11 \( 1 + (-5.70 + 1.13i)T + (10.1 - 4.20i)T^{2} \)
13 \( 1 + (0.791 + 0.791i)T + 13iT^{2} \)
19 \( 1 + (-1.74 + 0.720i)T + (13.4 - 13.4i)T^{2} \)
23 \( 1 + (-0.716 - 3.59i)T + (-21.2 + 8.80i)T^{2} \)
29 \( 1 + (7.13 - 4.76i)T + (11.0 - 26.7i)T^{2} \)
31 \( 1 + (-0.420 + 2.11i)T + (-28.6 - 11.8i)T^{2} \)
37 \( 1 + (-0.424 + 2.13i)T + (-34.1 - 14.1i)T^{2} \)
41 \( 1 + (3.08 + 2.06i)T + (15.6 + 37.8i)T^{2} \)
43 \( 1 + (-1.72 + 4.16i)T + (-30.4 - 30.4i)T^{2} \)
47 \( 1 + (7.04 + 7.04i)T + 47iT^{2} \)
53 \( 1 + (-8.10 + 3.35i)T + (37.4 - 37.4i)T^{2} \)
59 \( 1 + (4.00 - 9.67i)T + (-41.7 - 41.7i)T^{2} \)
61 \( 1 + (8.90 + 5.94i)T + (23.3 + 56.3i)T^{2} \)
67 \( 1 - 9.22T + 67T^{2} \)
71 \( 1 + (2.73 + 0.544i)T + (65.5 + 27.1i)T^{2} \)
73 \( 1 + (9.15 + 13.7i)T + (-27.9 + 67.4i)T^{2} \)
79 \( 1 + (0.721 + 3.62i)T + (-72.9 + 30.2i)T^{2} \)
83 \( 1 + (1.61 - 0.670i)T + (58.6 - 58.6i)T^{2} \)
89 \( 1 + (8.32 - 8.32i)T - 89iT^{2} \)
97 \( 1 + (-1.19 + 0.801i)T + (37.1 - 89.6i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.991657943088671699752999726905, −9.230408541271241961532291905431, −8.767055634809185757003758503481, −7.46623773483797524106868136243, −6.69598934251282837318031765042, −5.77800414632750702739823066287, −5.15748973273100786758402772222, −3.48645105734050435514248398458, −1.56089193343719328748616544013, −0.49895783477172579516181650727, 1.54837931626423662712020217991, 2.96256528270353586529578419997, 4.14475833436995364661919495433, 5.88126047123571665300265916235, 6.36867483219786538150933329343, 7.14691479015162166521000741700, 8.259281246263905613681930190936, 9.396028818986008264828839527201, 9.901901490274098767703420371775, 10.79634675382149522811532425132

Graph of the $Z$-function along the critical line